Skip to main content
Pearson+ LogoPearson+ Logo
Ch. 2 - Transmission Genetics
Sanders - Genetic Analysis: An Integrated Approach 3rd Edition
Sanders3rd EditionGenetic Analysis: An Integrated ApproachISBN: 9780135564172Not the one you use?Change textbook
Chapter 2, Problem 40c

Alkaptonuria is an infrequent autosomal recessive condition. It is first noticed in newborns when the urine in their diapers turns black upon exposure to air. The condition is caused by the defective transport of the amino acid phenylalanine through the intestinal walls during digestion. About 4 people per 1000 are carriers of alkaptonuria.
Sara and James had never heard of alkaptonuria and were shocked to discover that their first child had the condition. Sara's sister Mary and her husband, Frank, are planning to have a family and are concerned about the possibility of alkaptonuria in one of their children.
The four adults (Sara, James, Mary, and Frank) seek information from a neighbor who is a retired physician. After discussing their family histories, the neighbor says, 'I never took genetics, but I know from my many years in practice that Sara and James are both carriers of this recessive condition. Since their first child had the condition, there is a very low chance that the next child will also have it, because the odds of having two children with a recessive condition are very low. Mary and Frank have no chance of having a child with alkaptonuria because Frank has no family history of the condition.' The two couples each have babies and both babies have alkaptonuria.


What is the probability that the second child of Mary and Frank will have alkaptonuria?

Verified step by step guidance
1
Step 1: Understand the inheritance pattern of alkaptonuria. It is an autosomal recessive condition, meaning that an individual must inherit two copies of the defective allele (one from each parent) to express the condition. Carriers have one defective allele and one normal allele, and they do not exhibit symptoms.
Step 2: Analyze the information provided about Mary and Frank. Although Frank has no family history of the condition, this does not guarantee that he is not a carrier. To determine the probability of their child having alkaptonuria, we must first calculate the likelihood that both Mary and Frank are carriers.
Step 3: Calculate the probability that Mary is a carrier. Since Sara and James are both carriers, there is a 2/3 chance that Sara's sister Mary is also a carrier (assuming she does not have the condition herself). This is because, for siblings of carriers, the probabilities are distributed as 1/4 affected, 1/2 carrier, and 1/4 non-carrier, but we exclude the 'affected' category since Mary does not have the condition.
Step 4: Calculate the probability that Frank is a carrier. The problem states that about 4 people per 1000 are carriers of alkaptonuria in the general population. This means the probability of Frank being a carrier is 4/1000 or 0.004.
Step 5: Combine the probabilities. If both Mary and Frank are carriers, the probability of their child having alkaptonuria is 1/4 (since both parents must pass on the defective allele). Multiply the probabilities: (Probability Mary is a carrier) × (Probability Frank is a carrier) × (Probability of two carriers having an affected child).

Verified video answer for a similar problem:

This video solution was recommended by our tutors as helpful for the problem above.
Video duration:
1m
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Autosomal Recessive Inheritance

Autosomal recessive inheritance occurs when a trait or disorder is expressed only when an individual has two copies of the recessive allele, one inherited from each parent. In the case of alkaptonuria, both parents must be carriers of the defective gene for their child to express the condition. If only one parent carries the allele, the child will not exhibit the disorder but may be a carrier.
Recommended video:
Guided course
09:08
Autosomal Pedigrees

Carrier Probability

A carrier is an individual who possesses one copy of a recessive allele but does not express the associated trait. In the context of alkaptonuria, since both Sara and James are carriers, there is a 25% chance with each pregnancy that their child will inherit both recessive alleles and express the condition. Understanding carrier probability is crucial for assessing the risk of genetic conditions in offspring.
Recommended video:

Punnett Square

A Punnett square is a diagram used to predict the genetic makeup of offspring from two parents. It helps visualize the possible combinations of alleles that can result from a cross. For alkaptonuria, a Punnett square can illustrate the likelihood of their children being affected, carriers, or unaffected, providing a clear understanding of the genetic risks involved in the family planning of Mary and Frank.
Recommended video:
Guided course
18:27
Chi Square Analysis
Related Practice
Textbook Question

A cross between a spicy variety of Capsicum annum pepper and a sweet (nonspicy) variety produces F1 progeny plants that all have spicy peppers. The F1 are crossed, and among the F2 plants are 56 that produce spicy peppers and 20 that produce sweet peppers. Dr. Ara B. Dopsis, an expert on pepper plants, discovers a gene he designates Pun1 that he believes is responsible for spicy versus sweet flavor of peppers. Dr. Dopsis proposes that a dominant allele P produces spicy peppers and that a recessive mutant allele p results in sweet peppers.

Assuming the proposal is correct, what proportion of the spicy F2 pepper plants do you expect will be pure-breeding? Explain your answer.

396
views
Textbook Question

Alkaptonuria is an infrequent autosomal recessive condition. It is first noticed in newborns when the urine in their diapers turns black upon exposure to air. The condition is caused by the defective transport of the amino acid phenylalanine through the intestinal walls during digestion. About 4 people per 1000 are carriers of alkaptonuria.

Sara and James had never heard of alkaptonuria and were shocked to discover that their first child had the condition. Sara's sister Mary and her husband, Frank, are planning to have a family and are concerned about the possibility of alkaptonuria in one of their children.

The four adults (Sara, James, Mary, and Frank) seek information from a neighbor who is a retired physician. After discussing their family histories, the neighbor says, "I never took genetics, but I know from my many years in practice that Sara and James are both carriers of this recessive condition. Since their first child had the condition, there is a very low chance that the next child will also have it, because the odds of having two children with a recessive condition are very low. Mary and Frank have no chance of having a child with alkaptonuria because Frank has no family history of the condition." The two couples each have babies and both babies have alkaptonuria.


What are the genotypes of the four adults?

701
views
Textbook Question

Alkaptonuria is an infrequent autosomal recessive condition. It is first noticed in newborns when the urine in their diapers turns black upon exposure to air. The condition is caused by the defective transport of the amino acid phenylalanine through the intestinal walls during digestion. About 4 people per 1000 are carriers of alkaptonuria.

Sara and James had never heard of alkaptonuria and were shocked to discover that their first child had the condition. Sara's sister Mary and her husband, Frank, are planning to have a family and are concerned about the possibility of alkaptonuria in one of their children.

The four adults (Sara, James, Mary, and Frank) seek information from a neighbor who is a retired physician. After discussing their family histories, the neighbor says, 'I never took genetics, but I know from my many years in practice that Sara and James are both carriers of this recessive condition. Since their first child had the condition, there is a very low chance that the next child will also have it, because the odds of having two children with a recessive condition are very low. Mary and Frank have no chance of having a child with alkaptonuria because Frank has no family history of the condition.' The two couples each have babies and both babies have alkaptonuria.


What was incorrect about the information given to Sara and James? What is incorrect about the information given to Mary and Frank?

541
views
Textbook Question

Alkaptonuria is an infrequent autosomal recessive condition. It is first noticed in newborns when the urine in their diapers turns black upon exposure to air. The condition is caused by the defective transport of the amino acid phenylalanine through the intestinal walls during digestion. About 4 people per 1000 are carriers of alkaptonuria.

Sara and James had never heard of alkaptonuria and were shocked to discover that their first child had the condition. Sara's sister Mary and her husband, Frank, are planning to have a family and are concerned about the possibility of alkaptonuria in one of their children.

The four adults (Sara, James, Mary, and Frank) seek information from a neighbor who is a retired physician. After discussing their family histories, the neighbor says, 'I never took genetics, but I know from my many years in practice that Sara and James are both carriers of this recessive condition. Since their first child had the condition, there is a very low chance that the next child will also have it, because the odds of having two children with a recessive condition are very low. Mary and Frank have no chance of having a child with alkaptonuria because Frank has no family history of the condition.' The two couples each have babies and both babies have alkaptonuria.


What is the chance that the third child of Sara and James will be free of the condition?

559
views
Textbook Question

Alkaptonuria is an infrequent autosomal recessive condition. It is first noticed in newborns when the urine in their diapers turns black upon exposure to air. The condition is caused by the defective transport of the amino acid phenylalanine through the intestinal walls during digestion. About 4 people per 1000 are carriers of alkaptonuria.

Sara and James had never heard of alkaptonuria and were shocked to discover that their first child had the condition. Sara's sister Mary and her husband, Frank, are planning to have a family and are concerned about the possibility of alkaptonuria in one of their children.

The four adults (Sara, James, Mary, and Frank) seek information from a neighbor who is a retired physician. After discussing their family histories, the neighbor says, 'I never took genetics, but I know from my many years in practice that Sara and James are both carriers of this recessive condition. Since their first child had the condition, there is a very low chance that the next child will also have it, because the odds of having two children with a recessive condition are very low. Mary and Frank have no chance of having a child with alkaptonuria because Frank has no family history of the condition.' The two couples each have babies and both babies have alkaptonuria.


The couples are worried that one of their grandchildren will inherit alkaptonuria. How would you assess the risk that one of the offspring of a child with alkaptonuria will inherit the condition?

493
views
Textbook Question

Humans vary in many ways from one another. Among many minor phenotypic differences are the following five independently assorting traits that (sort of) have a dominant and a recessive phenotype: (1) forearm hair (alleles F and f )—the presence of hair on the forearm is dominant to the absence of hair on the forearm; (2) earlobe form (alleles E and e)—unattached earlobes are dominant to attached earlobes; (3) widow's peak (alleles W and w)—a distinct 'V' shape to the hairline at the top of the forehead is dominant to a straight hairline; (4) hitchhiker's thumb (alleles H and h)—the ability to bend the thumb back beyond vertical is dominant and the inability to do so is recessive; and (5) freckling (alleles D and d)—the appearance of freckles is dominant to the absence of freckles. In reality, the genetics of these traits are more complicated than single gene variation, but assume for the purposes of this problem that the patterns in families match those of other single-gene variants.

If a couple with the genotypes Ff Ee Ww Hh Dd and Ff Ee Ww Hh Dd have children, what is the chance the children will inherit the following characteristics?


the same phenotype as the parents

406
views