Statics and Mechanics of Materials, 5th edition
-
Mastering
4 from $64.99Pearson course ID or link in LMS required
-
-
Instant access$64.99
Modified Mastering Engineering without Pearson eText -- Instant Access -- for Statics and Mechanics of Materials
ISBN-13: 9780134398853
-
-
-
Instant access$109.99
Modified Mastering Engineering with Pearson eText -- Instant Access -- for Statics and Mechanics of Materials
ISBN-13: 9780134288314
-
-
-
Free deliveryWas$199.99 Now$159.99
Statics and Mechanics of Materials, Student Value Edition Plus Mastering Engineering with Pearson eText -- Access Card Package
ISBN-13: 9780134380704
-
-
-
Free deliveryWas$199.99 Now$159.99
Statics and Mechanics of Materials, Student Value Edition Plus Modified Mastering Engineering with Pearson eText -- Access Card Package
ISBN-13: 9780134300993
-
-
Print
$138.66Hardcover, paperback, or loose-leaf
-
-
Free deliveryWas$173.32 Now$138.66
Statics and Mechanics of Materials, Student Value Edition
ISBN-13: 9780134382890
Loose-Leaf
-
Overview
Statics and Mechanics of Materials represents a combined abridged version of two of the author’s books, namely Engineering Mechanics: Statics, 14th Edition, and Mechanics of Materials, 10th Edition. It provides a clear and thorough presentation of both the theory and application of the important fundamental topics of these subjects, that are often used in many engineering disciplines. The development emphasizes the importance of satisfying equilibrium, compatibility of deformation, and material behavior requirements. The hallmark of the book, however, remains the same as the author’s unabridged versions, and that is, strong emphasis is placed on drawing a free-body diagram, and the importance of selecting an appropriate coordinate system and an associated sign convention whenever the equations of mechanics are applied. Throughout the book, many analysis and design applications are presented, which involve mechanical elements and structural members often encountered in engineering practice.
Features and benefits
Mastering gives you the tools you need to learn — and to get a better grade.
- Personalized study tools: Show you what you know, what you don’t, and where to spend your time to fill the gaps.
- Immediate feedback: On assignments and quizzes — and assistance with each problem if you need it — helps you get unstuck.
- Mobile eText: Lets you learn on your terms, wherever you are.
Table of contents
1 General Principles
Chapter Objectives
1.1 Mechanics
1.2 Fundamental Concepts
1.3 The International System of Units
1.4 Numerical Calculations
1.5 General Procedure for Analysis
2 Force Vectors
Chapter Objectives
2.1 Scalars and Vectors
2.2 Vector Operations
2.3 Vector Addition of Forces
2.4 Addition of a System of Coplanar Forces
2.5 Cartesian Vectors
2.6 Addition of Cartesian Vectors
2.7 Position Vectors
2.8 Force Vector Directed Along a Line
2.9 Dot Product
3 Force System Resultants
Chapter Objectives
3.1 Moment of a Force–Scalar Formulation
3.2 Cross Product
3.3 Moment of a Force–Vector Formulation
3.4 Principle of Moments
3.5 Moment of a Force about a Specified Axis
3.6 Moment of a Couple
3.7 Simplification of a Force and Couple System
3.8 Further Simplification of a Force and Couple System
3.9 Reduction of a Simple Distributed Loading
4 Equilibrium of a Rigid Body
Chapter Objectives
4.1 Conditions for Rigid-Body Equilibrium
4.2 Free-Body Diagrams
4.3 Equations of Equilibrium
4.4 Two- and Three-Force Members
4.5 Free-Body Diagrams
4.6 Equations of Equilibrium
4.7 Characteristics of Dry Friction
4.8 Problems Involving Dry Friction
5 Structural Analysis
Chapter Objectives
5.1 Simple Trusses
5.2 The Method of Joints
5.3 Zero-Force Members
5.4 The Method of Sections
5.5 Frames and Machines
6 Center of Gravity, Centroid, and Moment of Inertia
Chapter Objectives
6.1 Center of Gravity and the Centroid of a Body
6.2 Composite Bodies
6.3 Moments of Inertia for Areas
6.4 Parallel-Axis Theorem for an Area
6.5 Moments of Inertia for Composite Areas
7 Stress and Strain
Chapter Objectives
7.1 Introduction
7.2 Internal Resultant Loadings
7.3 Stress
7.4 Average Normal Stress in an Axially Loaded Bar
7.5 Average Shear Stress
7.6 Allowable Stress Design
7.7 Deformation
7.8 Strain
8 Mechanical Properties of Materials
Chapter Objectives
8.1 The Tension and Compression Test
8.2 The Stress—Strain Diagram
8.3 Stress—Strain Behavior of Ductile and Brittle Materials
8.4 Strain Energy
8.5 Poisson’s Ratio
8.6 The Shear Stress—Strain Diagram
9 Axial Load
Chapter Objectives
9.1 Saint-Venant’s Principle
9.2 Elastic Deformation of an Axially Loaded Member
9.3 Principle of Superposition
9.4 Statically Indeterminate Axially Loaded Members
9.5 The Force Method of Analysis for Axially Loaded Members
9.6 Thermal Stress
10 Torsion
Chapter Objectives
10.1 Torsional Deformation of a Circular Shaft
10.2 The Torsion Formula
10.3 Power Transmission
10.4 Angle of Twist
10.5 Statically Indeterminate Torque-Loaded Members
11 Bending
Chapter Objectives
11.1 Shear and Moment Diagrams
11.2 Graphical Method for Constructing
Shear and Moment Diagrams
11.3 Bending Deformation of a Straight Member
11.4 The Flexure Formula
11.5 Unsymmetric Bending
12 Transverse Shear
Chapter Objectives
12.1 Shear in Straight Members
12.2 The Shear Formula
12.3 Shear Flow in Built-Up Members
13 Combined Loadings
Chapter Objectives
13.1 Thin-Walled Pressure Vessels
13.2 State of Stress Caused by Combined Loadings
14 Stress and Strain Transformation
Chapter Objectives
14.1 Plane-Stress Transformation
14.2 General Equations of Plane-Stress Transformation
14.3 Principal Stresses and Maximum In-Plane Shear Stress
14.4 Mohr’s Circle–Plane Stress
14.5 Absolute Maximum Shear Stress
14.6 Plane Strain
14.7 General Equations of Plane-Strain Transformation
*14.8 Mohr’s Circle–Plane Strain
*14.9 Absolute Maximum Shear Strain
14.10 Strain Rosettes
14.11 Material Property Relationships
15 Design of Beams and Shafts
Chapter Objectives
15.1 Basis for Beam Design
15.2 Prismatic Beam Design
16 Deflection of Beams and Shafts
Chapter Objectives
16.1 The Elastic Curve
16.2 Slope and Displacement by Integration
*16.3 Discontinuity Functions
16.4 Method of Superposition
16.5 Statically Indeterminate Beams and Shafts–Method of Superposition
17 Buckling of Columns
Chapter Objectives
17.1 Critical Load
17.2 Ideal Column with Pin Supports
17.3 Columns Having Various Types of Supports
*17.4 The Secant Formula
Appendix
A Mathematical Review and Expressions
B Geometric Properties of An Area and Volume
C Geometric Properties of Wide-Flange Sections
D Slopes and Deflections of Beams
Preliminary Problems Solutions
Fundamental Problems
Solutions and Answers
Selected Answers
Index
For teachers
All the material you need to teach your courses.
Discover teaching materialPublished by Pearson (July 8th 2016) - Copyright © 2017