Statistical Analysis: Microsoft Excel 2013, 1st edition

  • Conrad Carlberg

Unfortunately, this item is not available in your country.


Use Excel 2013’s statistical tools to transform your data into knowledge

Conrad Carlberg shows how to use Excel 2013 to perform core statistical tasks every business professional, student, and researcher should master. Using real-world examples, Carlberg helps you choose the right technique for each problem and get the most out of Excel’s statistical features, including recently introduced consistency functions. Along the way, he clarifies confusing statistical terminology and helps you avoid common mistakes.

You’ll learn how to use correlation and regression, analyze variance and covariance, and test statistical hypotheses using the normal, binomial, t, and F distributions. To help you make accurate inferences based on samples from a population, this edition adds two more chapters on inferential statistics, covering crucial topics ranging from experimental design to the statistical power of F tests.


Becoming an expert with Excel statistics has never been easier! You’ll find crystal-clear instructions, insider insights, and complete step-by-step projects—all complemented by extensive web-based resources.

  • Master Excel’s most useful descriptive and inferential statistical tools
  • Tell the truth with statistics—and recognize when others don’t
  • Accurately summarize sets of values
  • Infer a population’s characteristics from a sample’s frequency distribution
  • Explore correlation and regression to learn how variables move in tandem
  • Use Excel consistency functions such as STDEV.S() and STDEV.P()
  • Test differences between two means using z tests, t tests, and Excel’s Data Analysis Add-in
  • Use ANOVA to test differences between more than two means
  • Explore statistical power by manipulating mean differences, standard errors, directionality, and alpha
  • Take advantage of Recommended PivotTables, Quick Analysis, and other Excel 2013 shortcuts

Table of contents

Introduction     xi
Using Excel for Statistical Analysis     xi
   About You and About Excel     xii
   Clearing Up the Terms     xii
   Making Things Easier     xiii
   The Wrong Box?     xiv
   Wagging the Dog     xvi
What’s in This Book     xvi
1 About Variables and Values     1
Variables and Values     1
   Recording Data in Lists     2
Scales of Measurement     4
   Category Scales     5
   Numeric Scales     7
   Telling an Interval Value from a Text Value     8
Charting Numeric Variables in Excel     10
   Charting Two Variables     10
Understanding Frequency Distributions     12
   Using Frequency Distributions     15
   Building a Frequency Distribution from a Sample     18
   Building Simulated Frequency Distributions     26
2 How Values Cluster Together     29
Calculating the Mean     30
   Understanding Functions, Arguments, and Results     31
   Understanding Formulas, Results, and Formats     34
   Minimizing the Spread     36
Calculating the Median     41
   Choosing to Use the Median     41
Calculating the Mode     42
   Getting the Mode of Categories with a Formula     47
From Central Tendency to Variability     54
3 Variability: How Values Disperse     55
Measuring Variability with the Range     56
The Concept of a Standard Deviation     58
   Arranging for a Standard     59
   Thinking in Terms of Standard Deviations     60
Calculating the Standard Deviation and Variance     62
   Squaring the Deviations     65
   Population Parameters and Sample Statistics     66
   Dividing by N – 1     66
Bias in the Estimate     68
   Degrees of Freedom     69
Excel’s Variability Functions     70
   Standard Deviation Functions     70
   Variance Functions     71
4 How Variables Move Jointly: Correlation     73
Understanding Correlation     73
   The Correlation, Calculated     75
   Using the CORREL() Function     81
   Using the Analysis Tools     84
   Using the Correlation Tool     86
   Correlation Isn’t Causation     88
Using Correlation     90
   Removing the Effects of the Scale     91
   Using the Excel Function     93
   Getting the Predicted Values     95
   Getting the Regression Formula     96
Using TREND() for Multiple Regression     99
   Combining the Predictors     99
   Understanding “Best Combination”     100
   Understanding Shared Variance     104
   A Technical Note: Matrix Algebra and Multiple Regression in Excel     106
Moving on to Statistical Inference     107
5 How Variables Classify Jointly: Contingency Tables     109
Understanding One-Way Pivot Tables     109
   Running the Statistical Test     112
Making Assumptions     117
   Random Selection     118
   Independent Selections     119
   The Binomial Distribution Formula     120
   Using the BINOM     INV() Function     121
Understanding Two-Way Pivot Tables     127
   Probabilities and Independent Events     130
   Testing the Independence of Classifications     131
The Yule Simpson effect     137
Summarizing the Chi-Square Functions     140
   Using CHISQ     DIST()     140
   Using CHISQ     DIST     RT() and CHIDIST()     141
   Using CHISQ     INV()     143
   Using CHISQ     INV     RT() and CHIINV()     143
   Using CHISQ     TEST() and CHITEST()     144
   Using Mixed and Absolute References to Calculate Expected Frequencies     145
   Using the Pivot Table’s Index Display     146
6 Telling the Truth with Statistics     149
A Context for Inferential Statistics     150
   Establishing Internal Validity     151
   Threats to Internal Validity     152
Problems with Excel’s Documentation     156
The F-Test Two-Sample for Variances     157
   Why Run the Test?     158
   A Final Point     169
7 Using Excel with the Normal Distribution     171
About the Normal Distribution     171
   Characteristics of the Normal Distribution     171
   The Unit Normal Distribution     176
Excel Functions for the Normal Distribution     177
   The NORM     DIST() Function     177
   The NORM     INV() Function     180
Confidence Intervals and the Normal Distribution     182
   The Meaning of a Confidence Interval     183
   Constructing a Confidence Interval     184
   Excel Worksheet Functions That Calculate Confidence Intervals     187
   Using CONFIDENCE     NORM() and CONFIDENCE()     188
   Using CONFIDENCE     T()     191
   Using the Data Analysis Add-In for Confidence Intervals     192
   Confidence Intervals and Hypothesis Testing     194
The Central Limit Theorem     194
   Making Things Easier     196
   Making Things Better     198
8 Testing Differences Between Means: The Basics     199
Testing Means: The Rationale     200
   Using a z-Test     201
   Using the Standard Error of the Mean     204
   Creating the Charts     208
Using the t-Test Instead of the z-Test     216
   Defining the Decision Rule     218
   Understanding Statistical Power     222
9 Testing Differences Between Means: Further Issues     227
Using Excel’s T     DIST() and T     INV() Functions to Test Hypotheses     227
   Making Directional and Nondirectional Hypotheses     228
   Using Hypotheses to Guide Excel’s t-Distribution Functions     229
   Completing the Picture with T     DIST()     237
Using the T     TEST() Function     238
   Degrees of Freedom in Excel Functions     238
   Equal and Unequal Group Sizes     239
   The T     TEST() Syntax     242
Using the Data Analysis Add-in t-Tests     255
   Group Variances in t-Tests     255
   Visualizing Statistical Power     260
   When to Avoid t-Tests     261
10 Testing Differences Between Means: The Analysis of Variance     263
Why Not t-Tests?     263
The Logic of ANOVA     265
   Partitioning the Scores     265
   Comparing Variances     268
   The F Test     273
Using Excel’s Worksheet Functions for the F Distribution     277
   Using F     DIST() and F     DIST     RT()     277
   Using F     INV() and FINV()     278
   The F Distribution     279
Unequal Group Sizes     280
Multiple Comparison Procedures     282
   The Scheffé Procedure     284
   Planned Orthogonal Contrasts     289
11 Analysis of Variance: Further Issues     293
Factorial ANOVA     293
   Other Rationales for Multiple Factors     294
   Using the Two-Factor ANOVA Tool     297
The Meaning of Interaction     299
   The Statistical Significance of an Interaction     300
   Calculating the Interaction Effect     302
The Problem of Unequal Group Sizes     307
   Repeated Measures: The Two Factor Without Replication Tool     309
Excel’s Functions and Tools: Limitations and Solutions     310
   Mixed Models     312
   Power of the F Test     312
12 Experimental Design and ANOVA     315
Crossed Factors and Nested Factors     315
   Depicting the Design Accurately     317
   Nuisance Factors     317
Fixed Factors and Random Factors     318
   The Data Analysis Add-In’s ANOVA Tools     319
   Data Layout     320
Calculating the F Ratios     322
   Adapting the Data Analysis Tool for a Random Factor     322
   Designing the F Test     323
   The Mixed Model: Choosing the Denominator     325
   Adapting the Data Analysis Tool for a Nested Factor     326
   Data Layout for a Nested Design     327
   Getting the Sums of Squares     328
   Calculating the F Ratio for the Nesting Factor     329
13 Statistical Power     331
Controlling the Risk     331
   Directional and Nondirectional Hypotheses     332
   Changing the Sample Size     332
   Visualizing Statistical Power     333
   Quantifying Power     335
The Statistical Power of t-Tests     337
   Nondirectional Hypotheses     338
   Making a Directional Hypothesis     340
   Increasing the Size of the Samples     341
   The Dependent Groups t-Test     342
The Noncentrality Parameter in the F Distribution     344
   Variance Estimates     344
   The Noncentrality Parameter and the Probability Density Function     348
Calculating the Power of the F Test     350
   Calculating the Cumulative Density Function     350
   Using Power to Determine Sample Size     352
14 Multiple Regression Analysis and Effect Coding: The Basics     355
Multiple Regression and ANOVA     356
   Using Effect Coding     358
   Effect Coding: General Principles     358
   Other Types of Coding     359
Multiple Regression and Proportions of Variance     360
   Understanding the Segue from ANOVA to Regression     363
   The Meaning of Effect Coding     365
Assigning Effect Codes in Excel     368
Using Excel’s Regression Tool with Unequal Group Sizes     370
Effect Coding, Regression, and Factorial Designs in Excel     372
   Exerting Statistical Control with Semipartial Correlations     374
   Using a Squared Semipartial to Get the Correct Sum of Squares     376
Using Trend() to Replace Squared Semipartial Correlations     377
   Working With the Residuals     379
   Using Excel’s Absolute and Relative Addressing to Extend the Semipartials     381
15 Multiple Regression Analysis and Effect Coding: Further Issues     385
Solving Unbalanced Factorial Designs Using Multiple Regression     385
   Variables Are Uncorrelated in a Balanced Design     386
   Variables Are Correlated in an Unbalanced Design     388
   Order of Entry Is Irrelevant in the Balanced Design     388
   Order Entry Is Important in the Unbalanced Design     391
   About Fluctuating Proportions of Variance     393
Experimental Designs, Observational Studies, and Correlation     394
Using All the LINEST() Statistics     397
   Using the Regression Coefficients     398
   Using the Standard Errors     398
   Dealing with the Intercept     399
   Understanding LINEST()’s Third, Fourth, and Fifth Rows     400
   Getting the Regression Coefficients     406
   Getting the Sum of Squares Regression and Residual     410
   Calculating the Regression Diagnostics     412
   How LINEST() Handles Multicollinearity     416
   Forcing a Zero Constant     421
   The Excel 2007 Version     422
   A Negative R2?     425
Managing Unequal Group Sizes in a True Experiment     428
Managing Unequal Group Sizes in Observational Research     430
16 Analysis of Covariance: The Basics     433
The Purposes of ANCOVA     434
   Greater Power     434
   Bias Reduction     434
Using ANCOVA to Increase Statistical Power     435
   ANOVA Finds No Significant Mean Difference     436
   Adding a Covariate to the Analysis     437
Testing for a Common Regression Line     445
Removing Bias: A Different Outcome     447
17 Analysis of Covariance: Further Issues     453
Adjusting Means with LINEST() and Effect Coding     453
Effect Coding and Adjusted Group Means     458
Multiple Comparisons Following ANCOVA     461
   Using the Scheffé Method     462
   Using Planned Contrasts     466
The Analysis of Multiple Covariance     468
   The Decision to Use Multiple Covariates     469
   Two Covariates: An Example     470
Index     473

Published by Que Publishing (April 3rd 2014) - Copyright © 2014