Skip to main content
Pearson+ LogoPearson+ Logo
Ch. 2 - Transmission Genetics
Sanders - Genetic Analysis: An Integrated Approach 3rd Edition
Sanders3rd EditionGenetic Analysis: An Integrated ApproachISBN: 9780135564172Not the one you use?Change textbook
Chapter 2, Problem 44b

Situs inversus is a congenital condition in which the major visceral organs are reversed from their normal positions. Investigations into the genetics of this abnormality revealed that individuals with at least one dominant allele (SI) of an autosomal gene are normal but, surprisingly, of individuals that are homozygous for a recessive allele (si), 1/2 are situs inversus and 1/2 are normal.


What genotypes and phenotypes are expected in progeny from a cross of two SI si individuals?

Verified step by step guidance
1
Step 1: Identify the genotypes of the parents. Both parents are heterozygous (SI si), meaning they carry one dominant allele (SI) and one recessive allele (si).
Step 2: Set up a Punnett square to determine the possible genotypes of the offspring. Place the alleles of one parent (SI and si) along the top of the square and the alleles of the other parent (SI and si) along the side.
Step 3: Fill in the Punnett square by combining the alleles from the top and side. The possible genotypes of the offspring will be: SI SI, SI si, SI si, and si si.
Step 4: Determine the phenotypes associated with each genotype. SI SI and SI si individuals will be normal because they have at least one dominant SI allele. si si individuals are homozygous recessive, and based on the problem, 1/2 of si si individuals will be situs inversus, while the other 1/2 will be normal.
Step 5: Calculate the expected proportions of each phenotype. Combine the probabilities from the Punnett square and the information about si si individuals to determine the overall phenotypic ratios in the progeny.

Verified video answer for a similar problem:

This video solution was recommended by our tutors as helpful for the problem above.
Video duration:
4m
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Genotype and Phenotype

Genotype refers to the genetic constitution of an individual, specifically the alleles they possess for a particular gene. Phenotype, on the other hand, is the observable physical or biochemical characteristics of an organism, which result from the interaction of its genotype with the environment. Understanding the relationship between genotype and phenotype is crucial for predicting the traits of offspring in genetic crosses.
Recommended video:
Guided course
07:52
Gamete Genotypes

Mendelian Inheritance

Mendelian inheritance describes the patterns of inheritance for traits controlled by single genes, as established by Gregor Mendel. It includes concepts such as dominant and recessive alleles, where dominant alleles mask the expression of recessive ones. In the context of the question, the inheritance of the situs inversus trait can be analyzed using Punnett squares to predict the genotypes and phenotypes of the progeny from the cross.
Recommended video:
Guided course
05:13
Organelle Inheritance

Punnett Square

A Punnett square is a diagram used to predict the outcome of a genetic cross by displaying the possible combinations of alleles from the parents. In this case, crossing two individuals with genotypes SI si will help visualize the potential genotypes of their offspring. The Punnett square will illustrate the ratios of dominant and recessive traits, aiding in understanding the expected phenotypes of the progeny.
Recommended video:
Guided course
18:27
Chi Square Analysis
Related Practice
Textbook Question

In chickens, the presence of feathers on the legs is due to a dominant allele (F), and the absence of leg feathers is due to a recessive allele (f). The comb on the top of the head can be either pea-shaped, a phenotype that is controlled by a dominant allele (P), or a single comb controlled by a recessive allele (p). The two genes assort independently. Assume that a pure-breeding rooster that has feathered legs and a single comb is crossed with a pure-breeding hen that has no leg feathers and a pea-shaped comb. The F₁ are crossed to produce the F₂. Among the resulting F₂, however, only birds with a single comb and feathered legs are allowed to mate. These chickens mate at random to produce F₃ progeny. What are the expected genotypic and phenotypic ratios among the resulting F₃ progeny?

1208
views
1
comments
Textbook Question

A pure-breeding fruit fly with the recessive mutation cut wing, caused by the homozygous cc genotype, is crossed to a pure-breeding fly with normal wings, genotype CC. Their F1 progeny all have normal wings. F1 flies are crossed, and the F2 progeny have a 3:1 ratio of normal wing to cut wing. One male F2 fly with normal wings is selected at random and mated to an F2 female with normal wings. Using all possible genotypes of the F2 flies selected for this cross, list all possible crosses between the two flies involved in this mating, and determine the probability of each possible outcome.

670
views
Textbook Question

Situs inversus is a congenital condition in which the major visceral organs are reversed from their normal positions. Investigations into the genetics of this abnormality revealed that individuals with at least one dominant allele (SI) of an autosomal gene are normal but, surprisingly, of individuals that are homozygous for a recessive allele (si), 1/2 are situs inversus and 1/2 are normal.


What genotypes and phenotypes are expected in progeny from a cross of two si si individuals?

415
views
Textbook Question

Domestic dogs evolved from ancestral gray wolves. Wolves have coats of short, straight hair and lack 'furnishings,' a growth pattern marked by eyebrows and a mustache found in some domestic dogs. In domestic dogs, coat variation is controlled by allelic variation in three genes. Recessive mutant alleles in the FGF5 gene result in long hair, while dogs carrying the dominant ancestral allele have short hair. Likewise, recessive mutant alleles in the KRT71 gene result in curly hair, whereas dogs with an ancestral dominant allele have straight hair. Dominant mutant alleles in the RSPO2 gene cause the presence of furnishings, while dogs homozygous for the ancestral recessive allele have no furnishings. A pure-breeding curly- and long-haired poodle with furnishings was crossed to a pure-breeding short- and straight-haired border collie lacking furnishings


What are the genotypes and phenotypes of the puppies?

508
views
Textbook Question

Domestic dogs evolved from ancestral gray wolves. Wolves have coats of short, straight hair and lack 'furnishings,' a growth pattern marked by eyebrows and a mustache found in some domestic dogs. In domestic dogs, coat variation is controlled by allelic variation in three genes. Recessive mutant alleles in the FGF5 gene result in long hair, while dogs carrying the dominant ancestral allele have short hair. Likewise, recessive mutant alleles in the KRT71 gene result in curly hair, whereas dogs with an ancestral dominant allele have straight hair. Dominant mutant alleles in the RSPO2 gene cause the presence of furnishings, while dogs homozygous for the ancestral recessive allele have no furnishings. A pure-breeding curly- and long-haired poodle with furnishings was crossed to a pure-breeding short- and straight-haired border collie lacking furnishings


If dogs of the F₁ generation are interbred, what proportions of genotypes and phenotypes are expected in the F₂?

510
views
Textbook Question

Alleles of the IGF-1 gene in dogs, encoding insulin-like growth factor, largely determine whether a domestic dog will be large or small. Dogs with an ancestral dominant allele are large, whereas dogs homozygous for the mutant recessive allele are small. Chondrodysplasia, a short-legged phenotype (as in dachshunds and basset hounds), is caused by a dominant gain-of-function allele of the FGF4 gene. The MSTN gene encodes myostatin, a regulator of muscle development. Dogs with a dominant ancestral allele of the MTSN gene have normal muscle development, while dogs homozygous for recessive mutants in the MTSN gene are 'double muscled' and have trouble running quickly. However, dogs heterozygous for the mutant allele run faster than either of the homozygotes.

You breed a pure-breeding small basset hound of normal musculature with a pure-breeding 'bully' whippet, a double-muscled large dog with normal legs.

What are the genotypes and phenotypes of the F₁ puppies?

656
views