Skip to main content
Pearson+ LogoPearson+ Logo
Ch. 20 - Population Genetics and Evolution at the Population, Species, and Molecular Levels
Sanders - Genetic Analysis: An Integrated Approach 3rd Edition
Sanders3rd EditionGenetic Analysis: An Integrated ApproachISBN: 9780135564172Not the one you use?Change textbook
Chapter 20, Problem 41a

Put all the candies used in Problem 40 into a single mound and then divide them into four equal piles, this time being sure that the frequency of each color is the same in each pile. Label two of these piles 'male' and the other two 'female.' Half of the group will take one male and one female pile, and the other half of the group will take the other two piles. Each half of the group will carry out its own experiments: Blindly draw one candy from the male pile and one candy from the female pile. Record the colors of the two candies as though they were a genotype. Put the candies back into their respective piles.

Verified step by step guidance
1
Combine all the candies from Problem 40 into a single mound to ensure all colors are represented.
Divide the mound into four equal piles, ensuring that the frequency of each candy color is the same in each pile. This step ensures uniform distribution of colors across all piles.
Label two of the piles as 'male' and the other two as 'female' to distinguish their roles in the experiment.
Split the group into two halves. Assign one male and one female pile to each half of the group for their experiments.
For the experiment, each participant blindly draws one candy from the male pile and one candy from the female pile. Record the colors of the candies as though they represent a genotype (e.g., color from male = allele 1, color from female = allele 2). Return the candies to their respective piles after recording.

Verified video answer for a similar problem:

This video solution was recommended by our tutors as helpful for the problem above.
Video duration:
2m
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Genotype and Phenotype

Genotype refers to the genetic makeup of an organism, specifically the alleles it possesses for a particular trait. Phenotype, on the other hand, is the observable expression of that genotype, influenced by both genetic and environmental factors. In the context of the candy experiment, the colors of the candies represent different alleles, and drawing them simulates the process of genetic inheritance.
Recommended video:
Guided course
07:52
Gamete Genotypes

Mendelian Inheritance

Mendelian inheritance is the set of principles that describe how traits are passed from parents to offspring through alleles. It includes concepts such as dominance, segregation, and independent assortment. In this experiment, the equal division of candy colors into male and female piles mimics the segregation of alleles during gamete formation, allowing for the study of inheritance patterns.
Recommended video:
Guided course
05:13
Organelle Inheritance

Random Sampling

Random sampling is a technique used to select a subset of individuals from a larger population in a way that each individual has an equal chance of being chosen. This method is crucial in experiments to ensure that results are unbiased and representative. In the candy experiment, blindly drawing candies from the piles exemplifies random sampling, which helps to simulate genetic variation in offspring.
Recommended video:
Guided course
07:55
Non-Random Mating
Related Practice
Textbook Question

Divide the contents of a large bag of different-colored candies randomly and approximately equally among the members of the group. Do not pick specific candy colors, but simply empty the contents of the bag onto a table and quickly divide the pile. If you are doing this exercise by yourself, divide the contents of the bag into five piles. Tabulate the total number of candies of each color in the original bag by combining the numbers from each person. Use these numbers to determine the frequency of each color in the original bag.

382
views
Textbook Question

Divide the contents of a large bag of different-colored candies randomly and approximately equally among the members of the group. Do not pick specific candy colors, but simply empty the contents of the bag onto a table and quickly divide the pile. If you are doing this exercise by yourself, divide the contents of the bag into five piles. Have each person compare the frequencies of each color in they pile with the frequencies in the original bag. Describe any differences in frequency between the pile and the original bag.

446
views
Textbook Question

Divide the contents of a large bag of different-colored candies randomly and approximately equally among the members of the group. Do not pick specific candy colors, but simply empty the contents of the bag onto a table and quickly divide the pile. If you are doing this exercise by yourself, divide the contents of the bag into five piles. Identify what phenomenon explains the observed differences. What evolutionary mechanism do the observations emulate?

472
views
Textbook Question

Put all the candies used in Problem 40 into a single mound and then divide them into four equal piles, this time being sure that the frequency of each color is the same in each pile. Label two of these piles 'male' and the other two 'female.' Half of the group will take one male and one female pile, and the other half of the group will take the other two piles. Each half of the group will carry out its own experiments: Repeat this activity 24 more times, recording the 'genotype' each time.

431
views
Textbook Question

Put all the candies used in Problem 40 into a single mound and then divide them into four equal piles, this time being sure that the frequency of each color is the same in each pile. Label two of these piles 'male' and the other two 'female.' Half of the group will take one male and one female pile, and the other half of the group will take the other two piles. Each half of the group will carry out its own experiments: Determine the frequency of each candy color in the total of 25 draws (a total of 50 candies) and compare these frequencies with the original frequencies of the colors in the pile.

385
views
Textbook Question

Put all the candies used in Problem 40 into a single mound and then divide them into four equal piles, this time being sure that the frequency of each color is the same in each pile. Label two of these piles 'male' and the other two 'female.' Half of the group will take one male and one female pile, and the other half of the group will take the other two piles. Each half of the group will carry out its own experiments: Explain any observed differences in frequencies in terms of the evolutionary mechanism the results best emulate.

379
views