Calculus: Early Transcendentals, 3rd edition

Published by Pearson (September 1, 2020) © 2021

  • William L. Briggs University of Colorado Denver
  • Lyle Cochran Whitworth University
  • Bernard Gillett University of Colorado Boulder
  • Eric Schulz Walla Walla Community College
Products list

eTextbook features

  • Instant access to eTextbook
  • Search, highlight, and notes
  • Create flashcards
Products list

Details

  • Loose-leaf, 3-hole-punched pages
Products list

Access details

  • Pearson+ eTextbook with study tools
  • Instant access once purchased
  • Register with a Course ID, a link from your instructor or an LMS link (Blackboard™, Canvas™, Moodle or D2L®)

Features

  • Interactive digital learning experience
  • Help when and where you need it
  • Instant feedback on assignments
  • Apps and study tools

Designed for today's calculus students, the much-anticipated revision of Calculus: Multivariable retains its hallmark features while introducing important advances and refinements. Esteemed author team Briggs, Cochran, Gillett and Schulz build from a foundation of meticulously crafted exercise sets, then draw students into the narrative through writing that reflects the voice of the instructor. Examples are stepped out and thoughtfully annotated, and figures are designed to teach rather than simply supplement the narrative. In the 3rd Edition, revised exercise sets are a major focus. In response to user feedback, the authors implemented some significant changes to the exercise sets by rearranging and relabeling exercises, modifying some exercises, and adding many new ones, along with many other enhancements.

  1. Sequences and Infinite Series
    • 10.1 An Overview
    • 10.2 Sequences
    • 10.3 Infinite Series
    • 10.4 The Divergence and Integral Tests
    • 10.5 Comparison Tests
    • 10.6 Alternating Series
    • 10.7 The Ratio and Root Tests
    • 10.8 Choosing a Convergence Test
    • Review Exercises
  2. Power Series
    • 11.1 Approximating Functions with Polynomials
    • 11.2 Properties of Power Series
    • 11.3 Taylor Series
    • 11.4 Working with Taylor Series
    • Review Exercises
  3. Parametric and Polar Curves
    • 12.1 Parametric Equations
    • 12.2 Polar Coordinates
    • 12.3 Calculus in Polar Coordinates
    • 12.4 Conic Sections
    • Review Exercises
  4. Vectors and the Geometry of Space
    • 13.1 Vectors in the Plane
    • 13.2 Vectors in Three Dimensions
    • 13.3 Dot Products
    • 13.4 Cross Products
    • 13.5 Lines and Planes in Space
    • 13.6 Cylinders and Quadric Surfaces
    • Review Exercises
  5. Vector-Valued Functions
    • 14.1 Vector-Valued Functions
    • 14.2 Calculus of Vector-Valued Functions
    • 14.3 Motion in Space
    • 14.4 Length of Curves
    • 14.5 Curvature and Normal Vectors
    • Review Exercises
  6. Functions of Several Variables
    • 15.1 Graphs and Level Curves
    • 15.2 Limits and Continuity
    • 15.3 Partial Derivatives
    • 15.4 The Chain Rule
    • 15.5 Directional Derivatives and the Gradient
    • 15.6 Tangent Planes and Linear Approximation
    • 15.7 Maximum/Minimum Problems
    • 15.8 Lagrange Multipliers
    • Review Exercises
  7. Multiple Integration
    • 16.1 Double Integrals over Rectangular Regions
    • 16.2 Double Integrals over General Regions
    • 16.3 Double Integrals in Polar Coordinates
    • 16.4 Triple Integrals
    • 16.5 Triple Integrals in Cylindrical and Spherical Coordinates
    • 16.6 Integrals for Mass Calculations
    • 16.7 Change of Variables in Multiple Integrals
    • Review Exercises
  8. Vector Calculus
    • 17.1 Vector Fields
    • 17.2 Line Integrals
    • 17.3 Conservative Vector Fields
    • 17.4 Green’s Theorem
    • 17.5 Divergence and Curl
    • 17.6 Surface Integrals
    • 17.7 Stokes’ Theorem
    • 17.8 Divergence Theorem
    • Review Exercises
  • D2 Second-Order Differential Equations ONLINE
    • D2.1 Basic Ideas
    • D2.2 Linear Homogeneous Equations
    • D2.3 Linear Nonhomogeneous Equations
    • D2.4 Applications
    • D2.5 Complex Forcing Functions
    • Review Exercises

Appendices

  • A. Proofs of Selected Theorems
  • B. Algebra Review ONLINE
  • C. Complex Numbers ONLINE
  • Answers
  • Index
  • Table of Integrals

Need help? Get in touch