The structures of vitamins E and B6 are shown below. Predict which is more water soluble and which is more fat soluble. [Section 13.3]
Soaps consist of compounds such as sodium stearate, CH3(CH2)16COO–Na+, that have both hydrophobic and hydrophilic parts. Consider the hydrocarbon part of sodium stearate to be the “tail” and the charged part to be the “head.” (a) Which part of sodium stearate, head or tail, is more likely to be solvated by water? (b) Grease is a complex mixture of (mostly) hydrophobic compounds. Which part of sodium stearate, head or tail, is most likely to bind to grease? (c) If you have large deposits of grease that you want to wash away with water, you can see that adding sodium stearate will help you produce an emulsion. What intermolecular interactions are responsible for this?
Verified step by step guidanceKey Concepts
Hydrophilic and Hydrophobic Properties
Intermolecular Interactions
Emulsification
The figure shows two identical volumetric flasks containing the same solution at two temperatures. (b) Does the molality of the solution change with the change in temperature? [Section 13.4]
This portion of a phase diagram shows the vapor–pressure curves of a volatile solvent and of a solution of that solvent containing a nonvolatile solute. (b) What are the normal boiling points of the solvent and the solution? [Section 13.5]
Suppose you had a balloon made of some highly flexible semipermeable membrane. The balloon is filled completely with a 0.2 M solution of some solute and is submerged in a 0.1 M solution of the same solute:
Initially, the volume of solution in the balloon is 0.25 L. Assuming the volume outside the semipermeable membrane is large, as the illustration shows, what would you expect for the solution volume inside the balloon once the system has come to equilibrium through osmosis? [Section 13.5]
