Suppose you swing a ball of mass m in a vertical circle on a string of length L. As you probably know from experience, there is a minimum angular velocity ωmin you must maintain if you want the ball to complete the full circle without the string going slack at the top. Find an expression for ωmin.
The physics of circular motion sets an upper limit to the speed of human walking. (If you need to go faster, your gait changes from a walk to a run.) If you take a few steps and watch what's happening, you'll see that your body pivots in circular motion over your forward foot as you bring your rear foot forward for the next step. As you do so, the normal force of the ground on your foot decreases and your body tries to 'lift off' from the ground. A person's center of mass is very near the hips, at the top of the legs. Model a person as a particle of mass m at the top of a leg of length L. Find an expression for the person's maximum walking speed vmax.
Verified step by step guidance
Verified video answer for a similar problem:
Key Concepts
Circular Motion
Center of Mass
Normal Force
A 30 g ball rolls around a 40-cm-diameter L-shaped track, shown in FIGURE P8.53, at 60 rpm. What is the magnitude of the net force that the track exerts on the ball? Rolling friction can be neglected. Hint: The track exerts more than one force on the ball.
FIGURE P8.54 shows two small 1.0 kg masses connected by massless but rigid 1.0-m-long rods. What is the tension in the rod that connects to the pivot if the masses rotate at 30 rpm in a horizontal circle?
An airplane feels a lift force perpendicular to its wings. In level flight, the lift force points straight up and is equal in magnitude to the gravitational force on the plane. When an airplane turns, it banks by tilting its wings, as seen from behind, by an angle from horizontal. This causes the lift to have a radial component, similar to a car on a banked curve. If the lift had constant magnitude, the vertical component of would now be smaller than the gravitational force, and the plane would lose altitude while turning. However, you can assume that the pilot uses small adjustments to the plane's control surfaces so that the vertical component of continues to balance the gravitational force throughout the turn. Find an expression for the banking angle needed to turn in a circle of radius while flying at constant speed .
A 100 g ball on a 60-cm-long string is swung in a vertical circle about a point 200 cm above the floor. The string suddenly breaks when it is parallel to the ground and the ball is moving upward. The ball reaches a height 600 cm above the floor. What was the tension in the string an instant before it broke?
Scientists design a new particle accelerator in which protons (mass 1.7 X 10-27 kg) follow a circular trajectory given by where c = 5.0 m and k = 8.0 x 104 rad/s2 are constants and t is the elapsed time. What is the radius of the circle?
