A 50 g mass is attached to a light, rigid, 75-cm-long rod. The other end of the rod is pivoted so that the mass can rotate in a vertical circle. What speed does the mass need at the bottom of the circle to barely make it over the top of the circle?
A block of mass m slides down a frictionless track, then around the inside of a circular loop-the-loop of radius R . From what minimum height h must the block start to make it around without falling off? Give your answer as a multiple of R.
Verified step by step guidance
Verified video answer for a similar problem:
Key Concepts
Conservation of Energy
Centripetal Force
Minimum Speed at the Top of the Loop
A 50 g ice cube can slide up and down a frictionless 30° slope. At the bottom, a spring with spring constant 25 N/m is compressed 10 cm and used to launch the ice cube up the slope. How high does it go above its starting point?
You have been hired to design a spring-launched roller coaster that will carry two passengers per car. The car goes up a 10-m-high hill, then descends 15 m to the track's lowest point. You've determined that the spring can be compressed a maximum of 2.0 m and that a loaded car will have a maximum mass of 400 kg. For safety reasons, the spring constant should be 10% larger than the minimum needed for the car to just make it over the top. What is the maximum speed of a 350 kg car if the spring is compressed the full amount?
A horizontal spring with spring constant 100 N/m is compressed 20 cm and used to launch a 2.5 kg box across a frictionless, horizontal surface. After the box travels some distance, the surface becomes rough. The coefficient of kinetic friction of the box on the surface is 0.15. Use work and energy to find how far the box slides across the rough surface before stopping.
Two blocks with masses mA and mB are connected by a massless string over a massless, frictionless pulley. Block B, which is more massive than block A, is released from height h and falls. Write an expression for the speed of the blocks just as block B reaches the ground.
Two blocks with masses mA and mB are connected by a massless string over a massless, frictionless pulley. Block B, which is more massive than block A, is released from height h and falls. A 1.0 kg block and a 2.0 kg block are connected by a massless string over a massless, frictionless pulley. The impact speed of the heavier block, after falling, is 1.8 m/s. From how high did it fall?
