Skip to main content
Ch.8 - Basic Concepts of Chemical Bonding
Chapter 8, Problem 99a

Consider the molecule C4H5N, which has the connectivity shown below. (a) After the Lewis structure for the molecule is completed, how many s and how many p bonds are there in this molecule?
Lewis structure of C4H5N showing connectivity for bond analysis.

Verified Solution

Video duration:
2m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Lewis Structures

Lewis structures are diagrams that represent the bonding between atoms in a molecule and the lone pairs of electrons that may exist. They help visualize how atoms are connected and the distribution of electrons, which is crucial for understanding molecular geometry and reactivity. In the case of C4H5N, drawing the Lewis structure allows us to identify the types of bonds present.
Recommended video:
Guided course
04:28
Lewis Dot Structures: Ions

Types of Chemical Bonds

Chemical bonds can be classified into two main types: sigma (σ) and pi (π) bonds. Sigma bonds are formed by the head-on overlap of atomic orbitals and are the first bonds formed between two atoms, while pi bonds result from the side-to-side overlap of p orbitals and are found in double and triple bonds. Understanding these bond types is essential for determining the total number of bonds in a molecule.
Recommended video:
Guided course
00:45
Chemical Bonds

Bond Counting

Counting bonds in a molecule involves identifying both the number of sigma and pi bonds present. Each single bond is a sigma bond, while double bonds consist of one sigma and one pi bond, and triple bonds contain one sigma and two pi bonds. This process is vital for answering questions about the bonding structure of C4H5N and determining the total number of s and p bonds.
Recommended video:
Related Practice
Textbook Question

An important reaction for the conversion of natural gas to other useful hydrocarbons is the conversion of methane to ethane. 2 CH4(g) → C2H6(g) + H2(g) In practice, this reaction is carried out in the presence of oxygen, which converts the hydrogen produced into water. 2 CH4(g) + 12 O2(g) → C2H6(g) + H2O(g) Use Table 8.3 to estimate H for these two reactions. Why is the conversion of methane to ethane more favorable when oxygen is used? Why is the conversion of methane to ethane more favorable when oxygen is used?

587
views
Textbook Question

Two compounds are isomers if they have the same chemical formula but different arrangements of atoms. Use Table 8.3 to estimate H for each of the following gas-phase isomerization reactions and indicate which isomer has the lower enthalpy. (d) Methyl isocyanide → Acetonitrile

1365
views
Textbook Question

The Ti2+ ion is isoelectronic with the Ca atom. (c) What charge would Ti have to be isoelectronic with Ca2+ ?

1443
views
Textbook Question

The electron affinity of oxygen is -141 kJ/mol, corresponding to the reaction O(g) + e- → O-(g). The lattice energy of K2O(s) is 2238 kJ/mol. Use these data along with data in Appendix C and Figure 7.10 to calculate the 'second electron affinity' of oxygen, corresponding to the reaction O-(g) + e- → O2-(g)

2414
views
Textbook Question

One scale for electronegativity is based on the concept that the electronegativity of any atom is proportional to the ionization energy of the atom minus its electron affinity: electronegativity = k1I - EA2, where k is a proportionality constant. (b) Why are both ionization energy and electron affinity relevant to the notion of electronegativity?

1070
views
Textbook Question

One scale for electronegativity is based on the concept that the electronegativity of any atom is proportional to the ionization energy of the atom minus its electron affinity: electronegativity = k1I - EA2, where k is a proportionality constant. (c) By using data in Chapter 7, determine the value of k that would lead to an electronegativity of 4.0 for F under this definition.

1085
views