Cat breeders are aware that kittens expressing the X-linked calico coat pattern and tortoiseshell pattern are almost invariably females. Why are they certain of this?

What is the role of the enzyme aromatase in sexual differentiation in reptiles?
Verified step by step guidance
Verified video answer for a similar problem:
Key Concepts
Aromatase Enzyme
Sexual Differentiation
Environmental Sex Determination
In mice, the Sry gene is located on the Y chromosome very close to one of the pseudoautosomal regions that pairs with the X chromosome during male meiosis. Given this information, propose a model to explain the generation of unusual males who have two X chromosomes (with an Sry-containing piece of the Y chromosome attached to one X chromosome).
The genes encoding the red- and green-color-detecting proteins of the human eye are located next to one another on the X chromosome and probably evolved from a common ancestral pigment gene. The two proteins demonstrate 76 percent homology in their amino acid sequences. A normal-visioned woman (with both genes present on each of her two X chromosomes) has a red-color-blind son who was shown to have one copy of the green-detecting gene and no copies of the red-detecting gene. Devise an explanation for these observations at the chromosomal level (involving meiosis).
In the wasp Bracon hebetor, a form of parthenogenesis (the development of unfertilized eggs into progeny) resulting in haploid organisms is not uncommon. All haploids are males. When offspring arise from fertilization, females almost invariably result. P. W. Whiting has shown that an X-linked gene with nine multiple alleles (Xₐ, Xb, etc.) controls sex determination. Any homozygous or hemizygous condition results in males, and any heterozygous condition results in females. If an Xₐ/Xb female mates with an Xₐ male and lays 50 percent fertilized and 50 percent unfertilized eggs, what proportion of male and female offspring will result?
The Amami spiny rat (Tokudaia osimensis) lacks a Y chromosome, yet scientists at Hokkaido University in Japan have reported that key sex-determining genes continue to be expressed in this species. Provide possible explanations for why male differentiation can still occur in this mammalian species despite the absence of a Y chromosome.
In mice, the X-linked dominant mutation Testicular feminization (Tfm) eliminates the normal response to the testicular hormone testosterone during sexual differentiation. An XY mouse bearing the Tfm allele on the X chromosome develops testes, but no further male differentiation occurs—the external genitalia of such an animal are female. From this information, what might you conclude about the role of the Tfm gene product and the X and Y chromosomes in sex determination and sexual differentiation in mammals? Can you devise an experiment, assuming you can 'genetically engineer' the chromosomes of mice, to test and confirm your explanation?
