Skip to main content Skip to main navigation

Calculus For Biology and Medicine, 4th edition

  • Claudia Neuhauser
  • Marcus Roper

Published by Pearson (November 3rd 2017) - Copyright © 2018

4th edition

Unfortunately, this item is not available in your country.

Overview

NOTE: Before purchasing, check with your instructor to ensure you select the correct ISBN. Several versions of the MyLab™ and Mastering™ platforms exist for each title, and registrations are not transferable. To register for and use MyLab or Mastering, you may also need a Course ID, which your instructor will provide.


Used books, rentals, and purchases made outside of Pearson

If purchasing or renting from companies other than Pearson, the access codes for the MyLab platform may not be included, may be incorrect, or may be previously redeemed. Check with the seller before completing your purchase.


For freshman-level, two-semester or three-semester courses in Calculus for Life Sciences.

This package includes MyLab Math.


Shows students how calculus is used to analyze phenomena in nature – while providing flexibility for instructors to teach at their desired level of rigor

Calculus for Biology and Medicine motivates life and health science majors to learn calculus through relevant and strategically placed applications to their chosen fields. It presents the calculus in such a way that the level of rigor can be adjusted to meet the specific needs of the audience – from a purely applied course to one that matches the rigor of the standard calculus track.  


In the 4th Edition, new co-author Marcus Roper (UCLA) partners with author Claudia Neuhauser to preserve these strengths while adding an unprecedented number of real applications and an infusion of modeling and technology.


Reach every student by pairing this text with MyLab Math

MyLab™ Math is the teaching and learning platform that empowers instructors to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab Math personalizes the learning experience and improves results for each student. For the first time, instructors teaching with Calculus for Biology and Medicine can assign text-specific online homework and other resources to students outside of the classroom. 


0134845048 / 9780134845043  Calculus for Biology and Medicine plus MyLab Math with Pearson eText  — Access Card Package, 4/e

Package consists of:

  • 0134070046 / 9780134070049  Calculus for Biology and Medicine

  • 0134782895 / 9780134782898  MyLab Math with Pearson eText - Standalone Access Card - for Calculus for Biology and Medicine, 4/e

Table of contents

(NOTE: Each chapter concludes with Key Terms and Review Problems.)

See the preface for a comprehensive Table of Contents.


1.    Preview and Review          

1.1     Precalculus Skills Diagnostic Test    

1.2     Preliminaries    

1.3        Elementary Functions    

1.4        Graphing    


2.     Discrete-Time Models, Sequences, and Difference Equations    

2.1     Exponential Growth and Decay     

2.2     Sequences      

2.3     Modeling with Recurrence Equations    

 

3.     Limits and Continuity    

3.1     Limits    

3.2     Continuity    

3.3     Limits at Infinity    

3.4     Trigonometric Limits and the Sandwich Theorem    

3.5     Properties of Continuous Functions    

3.6     A Formal Definition of Limits (Optional)    


4.     Differentiation    

4.1     Formal Definition of the Derivative    

4.2     Properties of the Derivative     

4.3     Power Rules and Basic Rules    

4.4     The Product and Quotient Rules, and the Derivatives of Rational and Power Functions    

4.5     Chain Rule    

4.6     Implicit Functions and Implicit Differentiation    

4.7     Higher Derivatives    

4.8     Derivatives of Trigonometric Functions    

4.9     Derivatives of Exponential Functions    

4.10     Inverse Functions and Logarithms  

4.11     Linear Approximation and Error Propagation    


5.     Applications of Differentiation    

5.1     Extrema and the Mean-Value Theorem    

5.2     Monotonicity and Concavity    

5.3     Extrema and Inflection Points    

5.4     Optimization    

5.5     L'Hôpital's Rule    

5.6     Graphing and Asymptotes

5.7     Recurrence Equations: Stability (Optional)    

5.8     Numerical Methods: The Newton - Raphson Method (Optional)    

5.9     Modeling Biological Systems Using Differential Equations (Optional)

5.10     Antiderivatives    


6.     Integration    

6.1     The Definite Integral    

6.2     The Fundamental Theorem of Calculus      

6.3     Applications of Integration    


7.     Integration Techniques and Computational Methods    

7.1     The Substitution Rule    

7.2     Integration by Parts and Practicing Integration     

7.3     Rational Functions and Partial Fractions    

7.4     Improper Integrals (Optional)    

7.5     Numerical Integration    

7.6     The Taylor  Approximation (optional)    

7.7     Tables of Integrals (Optional)    

    

8.     Differential Equations    

8.1     Solving Separable Differential Equations    

8.2     Equilibria and Their Stability    

8.3     Differential Equation Models    

8.4     Integrating Factors and Two-Compartment Models    


9.     Linear Algebra and Analytic Geometry    

9.1     Linear Systems    

9.2     Matrices    

9.3     Linear Maps, Eigenvectors, and Eigenvalues    

9.4     Demographic Modeling    

9.5     Analytic Geometry    


10.    Multivariable Calculus

10.1    Two or More Independent Variables

10.2    Limits and Continuity (optional)

10.3    Partial Derivatives

10.4    Tangent Planes, Differentiability, and Linearization

10.5    The Chain Rule and Implicit Differentiation (Optional)

10.6    Directional Derivatives and Gradient Vectors (Optional)

10.7    Maximization and Minimization of Functions (Optional)

10.8    Diffusion (Optional)

10.9    Systems of Difference Equations (Optional)


11.    Systems of Differential Equations

11.1    Linear Systems: Theory

11.2    Linear Systems: Applications

11.3    Nonlinear Autonomous Systems: Theory

11.4    Nonlinear Systems: Lotka - Volterra Model of Interspecific Interactions

11.5    More Mathematical Models (Optional)


12.     Probability and Statistics    

12.1     Counting    

12.2     What Is Probability?    

12.3     Conditional Probability and Independence    

12.4     Discrete Random Variables and Discrete Distributions    

12.5     Continuous Distributions    

12.6     Limit Theorems    

12.7     Statistical Tools    

  

Appendix A: Frequently Used Symbols

Appendix B: Table of the Standard Normal Distribution

Answers to Odd-Numbered Problems

References

Photo Credits

Index 

For teachers

All the material you need to teach your courses.

Discover teaching material