Foundations of MEMS, 2nd edition

  • Chang Liu

Foundations of MEMS

ISBN-13:  9780132497367

Add to cart form
Free delivery
$181.32 $226.65
Free delivery
$181.32 $226.65

What's included

  • Hardcover

    You'll get a bound printed text.


For courses in Micro-Electro-Mechanical Systems (MEMS) taken by advanced undergraduate students, beginning graduate students, and professionals.

Foundations of MEMS is an entry-level text designed to systematically teach the specifics of MEMS to an interdisciplinary audience. Liu discusses designs, materials, and fabrication issues related to the MEMS field by employing concepts from both the electrical and mechanical engineering domains and by incorporating evolving microfabrication technology — all in a time-efficient and methodical manner. A wealth of examples and problems solidify students’ understanding of abstract concepts and provide ample opportunities for practicing critical thinking.

Table of contents

Preface to Second Edition
Preface to First Edition
Note to Instructors
About the Author
Notational Conventions

Chapter 1: Introduction
1.0. Preview    
1.1.  The History of MEMS Development    
1.1.1. From the Beginning to 1990    
1.1.2. From 1990 to 2001    
1.1.3. 2002 to present    
1.1.4. Future Trends    
1.2. The Intrinsic Characteristics of MEMS    
1.2.1. Miniaturization    
1.2.2. Microelectronics Integration    
1.2.3. Parallel Fabrication with Precision    
1.3. Devices: Sensors and Actuators         
1.3.1. Energy Domains and Transducers         
1.3.2. Sensors Considerations         
13.3.  Sensor Noise and Design Complexity         
1.3.4. Actuators Considerations         

Chapter 2: First-Pass Introduction to Microfabrication           
2.0. Preview         
2.1. Overview of Microfabrication         
2.2. Essential Overview of Frequently Used Microfabrication Processes    
2.2.1. Photolithography         
2.2.2. Thin film deposition         
2.2.3. Thermal oxidation of silicon         
2.2.4. Wet Etching         
2.2.5. Silicon anisotropic etching         
2.2.6. Plasma etching and reactive ion etching         
2.2.7. Doping         
2.2.8. Wafer dicing         
2.2.9. Wafer bonding         
2.3. The Microelectronics Fabrication Process Flow         
2.4. Silicon-based MEMS Processes         
2.5. Packaging and Integration         
2.5.1. Integration Options         
2.5.2. Encapsulation         
2.6. New Materials and Fabrication Processes         
2.7. Process Selection and Design         
2.7.1. Points of Consideration for Deposition Processes    
2.7.2. Points of Consideration for Etching Processes         
2.7.3. Ideal Rules for Building a Process Flow         
2.7.4. Rules for Building a Robust Process         

Chapter 3: Review of Essential Electrical and Mechanical Concepts         
3.0 Preview         
3.1. Conductivity of Semiconductors         
3.1.1. Semiconductor Materials         
3.1.2. Calculation of Charge Carrier Concentration         
3.1.3. Conductivity and Resistivity         
3.2. Crystal Planes and Orientations         
3.3. Stress and Strain         
3.3.1. Internal Force Analysis: Newton's Laws of Motion         
3.3.2. Definitions of Stress and Strain         
3.3.3. General Scalar Relation between Tensile Stress and Strain         
3.3.4. Mechanical Properties of Silicon and Related Thin Films         
3.3.5. General Stress — Strain Relations         
3.4. Flexural Beam Bending Analysis under Simple Loading Conditions         
3.4.1. Types of Beams         
3.4.2. Longitudinal Strain under Pure Bending         
3.4.3. Deflection of Beams         
3.4.4. Finding the Spring Constants         
3.5. Torsional Deflections         
3.6. Intrinsic Stress         
3.7. Dynamic System, Resonant Frequency, and Quality Factor         
3.7.1. Dynamic System and Governing Equation         
3.7.2. Response under Sinusoidal Resonant Input         
3.7.3. Damping and Quality Factor         
3.7.4. Resonant Frequency and Bandwidth         
3.8. Active Tuning of Spring Constant and Resonant Frequency         
3.9. A List of Suggested Courses and Books         
Chapter 4: Electrostatic Sensing and Actuation
Section 4.0. Preview         
Section 4.1.  Introduction to Electrostatic Sensors and Actuators         
Section 4.2. Parallel Plate Capacitor         
4.2.1. Capacitance of Parallel Plates         
4.2.2.  Equilibrium Position of Electrostatic Actuator under Bias         
4.2.3. Pull-in Effect of Parallel-Plate Actuators         
Section 4.3. Applications of Parallel-Plate Capacitors         
4.3.1. Inertia Sensor         
4.3.2. Pressure Sensor         
4.3.3. Flow Sensor         
4.3.4. Tactile sensor         
4.3.5. Parallel-plate actuators         
Section 4.4. Interdigitated Finger Capacitors         
Section 4.5. Applications of Comb-Drive Devices         
4.5.1. Inertia Sensors         
4.5.2. Actuators         

Chapter 5: Thermal Sensing and Actuation
5.0.     Preview         
5.1. Introduction         
5.1.1. Thermal Sensors         
5.1.2. Thermal Actuators         
5.1.3. Fundamentals of Thermal Transfer         
5.2. Sensors and Actuators Based on Thermal Expansion
5.2.1. Thermal Bimorph Principle         
5.2.2. Thermal Actuators with a Single Material         
5.3. Thermal Couples         
5.4. Thermal Resistors         
5.5. Applications         
5.5.1. Inertia Sensors         
5.5.2. Flow Sensors         
5.5.3. Infrared Sensors         
5.5.4. Other Sensors         

Chapter 6:  Piezoresistive Sensors         
6.0.     Preview         
6.1.     Origin and Expression of Piezoresistivity         
6.2.     Piezoresistive Sensor Materials         
6.2.1. Metal Strain Gauges         
6.2.2.     Single Crystal Silicon         
6.2.3. Polycrystalline Silicon         
6.3. Stress Analysis of Mechanical Elements         
6.3.1. Stress in Flexural Cantilevers         
6.3.2. Stress and Deformation in Membrane         
6.4. Applications of Piezoresistive Sensors         
6.4.1. Inertial Sensors         
6.4.2. Pressure Sensors         
6.4.3. Tactile sensor         
6.4.4. Flow sensor         

Chapter 7: Piezoelectric Sensing and Actuation    
7.0. Preview    
7.1. Introduction    
7.1.1. Background   
7.1.2. Mathematical description of piezoelectric effects    
7.1.3. Cantilever piezoelectric actuator model    
7.2. Properties of Piezoelectric Materials    
7.2.1. Quartz    
7.2.2. PZT    
7.2.3. PVDF    
7.2.4. ZnO    
7.2.5. Other Materials    
7.3. Applications    
7.3.1. Inertia Sensors    
7.3.2. Acoustic Sensors    
7.3.3. Tactile Sensors    
7.3.4. Flow Sensors    
7.3.5. Surface Elastic Waves    

Chapter 8: Magnetic Actuation    
8.0. Preview    
8.1. Essential Concepts and Principles    
8.1.1. Magnetization and Nomenclatures    
8.1.3. Selected Principles of Micro Magnetic Actuators    
8.2 Fabrication of Micro Magnetic Components    
8.2.1. Deposition of Magnetic Materials    
8.2.2. Design and Fabrication of Magnetic Coil    
8.3. Case Studies of MEMS Magnetic Actuators   

Chapter 9: Summary of Sensing and Actuation Methods
9.0. Preview    
9.1. Comparison of Major Sensing and Actuation Methods   
9.2. Other Sensing and Actuation Methods   
9.2.1. Tunneling Sensing    
9.2.3 Optical Sensing    
9.2.4. Field Effect Transistors    
9.2.5. Radio Frequency Resonance Sensing    

Chapter 10: Bulk Micromachining and Silicon Anisotropic Etching    
10.0.      Preview    
10.1.     Introduction    
10.2.     Anisotropic Wet Etching    
10.2.1. Introduction    
10.2.2. Rules of Anisotropic Etching–Simplest Case  
10.2.3. Rules of Anisotropic Etching–Complex Structures    
10.2.4. Forming Protrusions  
10.2.5. Interaction of Etching Profiles from Isolated Patterns    
10.2.6. Summary of design methodology   
10.2.7. Chemicals for Wet Anisotropic Etching    
10.3. Dry Etching and Deep Reactive Ion Etching    
10.4. Isotropic Wet Etching  
10.5. Gas Phase Etchants    
10.6. Native Oxide    
10.7. Special Wafers and Techniques    

Chapter 11: Surface Micromachining    
11.0. Preview    
11.1. Basic Surface Micromachining Processes    
11.1.1.     Sacrificial Etching Process    
11.1.2. Micro Motor Fabrication Process–A First Pass    
11.2.3. Micro Motor Fabrication Process–A Second Pass    
11.1.4. Micro Motor Fabrication Process–Third Pass    
11.2. Structural and Sacrificial Materials    
11.2.1. Material Selection Criteria for a Two-layer Process   
11.2.2. Thin Films by Low Pressure Chemical Vapor Deposition    
11.2.3. Other Surface Micromachining Materials and Processes    
11.3. Acceleration of Sacrificial Etch    
11.4. Stiction and Anti-stiction Methods    

Chapter 12: Process Synthesis: Putting It all Together    
12.0.     Preview    
12.1. Process for Suspension Beams    
12.2. Process for Membranes    
12.3. Process for Cantilevers    
12.3.1. SPM Technologies Case Motivation    
12.3.2. General Fabrication Methods for Tips   
12.3.3. Cantilevers with Integrated Tips    
12.3.4. Cantilevers with Integrated Sensors    
12.3.5. SPM Probes with Actuators    
12.4. Practical Factors Affecting Yield of MEMS    

Chapter 13: Polymer MEMS    
13.0. Preview    
13.1. Introduction    
13.2. Polymers in MEMS    
13.2.1. Polyimide    
13.2.2. SU-8    
13.2.3. Liquid Crystal Polymer (LCP)    
13.2.4. PDMS    
13.2.5. PMMA   
13.2.6. Parylene  
13.2.7. Fluorocarbon   
13.2.8. Other Polymers    
13.3. Representative Applications    
13.3.1. Acceleration Sensors    
13.3.2. Pressure Sensors    
13.3.3. Flow sensors    
13.3.4. Tactile Sensors    

Chapter 14: Micro Fluidics Applications   
14.0. Preview    
14.1. Motivation for Microfluidics    
14.2. Essential Biology Concepts    
14.3. Basic Fluid Mechanics Concepts   
14.3.1. The Reynolds Number and Viscosity    
14.3.2. Methods for Fluid Movement in Channels    
14.3.3. Pressure Driven Flow    
14.3.4. Electrokinetic Flow    
14.3.5. Electrophoresis and Dielectrophoresis    
14.4. Design and Fabrication of Selective Components    
14.4.1. Channels    
14.4.2. Valves    

Chapter 15: Case Studies of Selected MEMS Products    
15.0. Preview    
15.1. Case Studies: Blood Pressure (BP) Sensor   
15.1.1. Background and History   
15.1.2. Device Design Considerations    
15.1.3. Commercial Case: NovaSensor BP Sensor    
15.2. Case Studies: Microphone    
15.2.1. Background and History    
15.2.2. Design Considerations    
15.2.3. Commercial Case: Knowles Microphone    
15.3. Case Studies: Acceleration Sensors    
15.3.1. Background and History    
15.4.2. Design Considerations    
15.4.1. Commercial Case: Analog Devices and MEMSIC   
15.4. Case Studies: Gyros    
15.4.1. Background and History    
15.4.2. The Coriolis Force  
15.4.3. MEMS Gyro Design    
15.4.4. Single Axis Gyro Dynamics   
15.4.4. Commercial Case: InvenSense Gyro    
15.5 Summary of Top Concerns for MEMS Product Development    
15.5.1. Performance and Accuracy    
15.5.2. Repeatability and Reliability    
15.5.3. Managing the Cost of MEMS Products    
15.5.4. Market Uncertainties, Investment, and Competition    

Appendix 1: Characteristics of selected MEMS material
Appendix 2: Frequently Used Formula for Beams, Cantilevers, and Plates
Appendix 3: Basic Tools for Dealing with a Mechanical Second-order Dynamic System
Appendix 4: Most Commonly Encountered Materials
Appendix 5: Most Commonly Encountered Material Removal Process Steps
Appendix 6: A List of General Compatibility between General Materials and Processes
Appendix 7: Comparison of Commercial Inertial Sensors
Answers to selected problems

For teachers

All the material you need to teach your courses.

Discover teaching material

Published by Pearson (March 4th 2011) - Copyright © 2012