text.skipToContent text.skipToNavigation

Fundamentals of Communication Systems, 2nd edition

  • John G. Proakis
  • Masoud Salehi

Published by Pearson (June 27th 2013) - Copyright © 2014

2nd edition

Chosen format
View all
Fundamentals of Communication Systems

ISBN-13: 9780133354850

Includes: Hardcover
Free delivery
$191.99 $239.99

What's included

  • Hardcover

    You'll get a bound printed text.

Overview

This book introduces the basic techniques used in modern communication systems and provides fundamental tools and methodologies used in the analysis and design of these systems. The authors emphasize digital communication systems - the backbone of modern communication systems - including new generations of wireless communication systems, satellite communications, and data transmission networks. KEY TOPICS: Discusses traditional analog communication systems. Reviews the background material needed in two separate chapters at the end of the book. Provides computer problems in each chapter that require MATLAB to solve. Offers a large number of problems in varying levels of difficulty at the end of each chapter. Features many worked examples throughout. Includes two separate chapters on Information Theory and Coding to give sufficient emphasis to these key topics. MARKET: A useful reference for practicing engineers.

Table of contents

PREFACE xvii

1 INTRODUCTION 1

1.1 Historical Review 1

1.2 Elements of an Electrical Communication System 4

1.2.1 Digital Communication System, 7

1.2.2 Early Work in Digital Communications, 10

1.3 Communication Channels and Their Characteristics 12

1.4 Mathematical Models for Communication Channels 18

1.5 Summary and Further Reading 20

2 SIGNALS AND LINEAR SYSTEMS 21

2.1 Basic Concepts 21

2.1.1 Basic Operations on Signals, 21

2.1.2 Classification of Signals, 23

2.1.3 Some Important Signals and Their Properties, 31

2.1.4 Classification of Systems, 38

2.1.5 Analysis of LTI Systems in the Time Domain, 41

2.2 Fourier Series 43

2.2.1 Fourier Series and Its Properties, 44

2.2.2 Response of LTI Systems to Periodic Signals, 54

2.2.3 Parseval’s Relation, 56

2.3 Fourier Transform 58

2.3.1 From Fourier Series to Fourier Transforms, 58

2.3.2 Basic Properties of the Fourier Transform, 64

2.3.3 Fourier Transform for Periodic Signals, 78

2.3.4 Transmission over LTI Systems, 81

2.4 Filter Design 85

2.5 Power and Energy 89

2.5.1 Energy-Type Signals, 89

2.5.2 Power-Type Signals, 92

2.6 Hilbert Transform and Its Properties 95

2.7 Lowpass and Bandpass Signals 98

2.8 Summary and Further Reading 100

Problems 101

3 AMPLITUDE MODULATION 117

3.1 Introduction to Modulation 118

3.2 Amplitude Modulation 119

3.2.1 Double-Sideband Suppressed-Carrier AM, 119

3.2.2 Conventional Amplitude Modulation, 126

3.2.3 Single-Sideband AM, 132

3.2.4 Vestigial-Sideband AM, 134

3.3 Implementation of Amplitude Modulators and Demodulators 137

3.4 Signal Multiplexing 144

3.4.1 Frequency-Division Multiplexing, 144

3.4.2 Quadrature-Carrier Multiplexing, 145

3.5 AM Radio Broadcasting 146

3.6 Summary and Further Reading 149

Appendix 3A: Derivation of the Expression for SSB-AM Signals 149

Problems 151

4 ANGLE MODULATION 161

4.1 Representation of FM and PM Signals 161

4.2 Spectral Characteristics of Angle-Modulated Signals 166

4.2.1 Angle Modulation by a Sinusoidal Signal, 166

4.2.2 Angle Modulation by an Arbitrary Message Signal, 170

4.3 Implementation of Angle Modulators and Demodulators 171

4.4 FM Radio Broadcasting 179

4.5 Summary and Further Reading 181

Problems 182

5 PROBABILITY AND RANDOM PROCESSES 190

For teachers

All the material you need to teach your courses.

Discover teaching material