RF Circuit Design: Theory & Applications, 2nd edition

  • Reinhold Ludwig
  • Gene Bogdanov

RF Circuit Design: Theory & Applications

ISBN-13:  9780131471375

Add to cart form
Free delivery
$133.32 $166.65
Free delivery
$133.32 $166.65

What's included

  • Hardcover

    You'll get a bound printed text.


This straightforward volume takes a distributed, transmission line approach to RF circuit design, with a focus on methodology fundamentals and minimal discussion of theoretical concepts. The Second Edition introduces RF design tools such as the Smith Chart, dual port networks, S-parameters, and provides extensive coverage of RF filter design, matching networks, active and passive device modeling, narrow and broadband amplifiers, mixers, and oscillators. KEY TOPICS: Approaches RF design from a circuit perspective, so readers need little or no background in electromagnetic fields. Prominently features key RF concepts in sidebars throughout the text. MARKET: For anyone interested in learning more about RF circuit design.

Table of contents

(NOTE: All chapters end with a Summary.)

1. Introduction.

Importance of Radiofrequency Design. Dimensions and Units. Frequency Spectrum. RF Behavior of Passive Components. Chip Components and Circuit Board Considerations.

2. Transmission Line Analysis.

Why Transmission Line Theory? Examples of Transmission Lines. Equivalent Circuit Representation. Theoretical Foundation. Circuit Parameters for a Parallel Plate Transmission Line. Summary of Different Line Configurations. General Transmission Line Equation. Microstrip Transmission Line. Terminated Lossless Transmission Line. Special Termination Conditions. Sourced and Loaded Transmission Line.

The Smith Chart.

From Reflection Coefficient to Load Impedance. Impedance Transformation. Admittance Transformation. Parallel and Series Connections.

4. Single- and Multiport Networks.

Basic Definitions. Interconnecting Networks. Network Properties and Applications. Scattering Parameters.

5. An Overview of RF Filter Design.

Basic Resonator and Filter Configurations. Special Filter Realizations. Filter Implementation. Coupled Filter.

6. Active RF Components.

Semiconductor Basics. RF Diodes. Bipolar-Junction Transistor. RF Field Effect Transistors. High Electron Mobility Transistors.

7. Active RF Component Modeling.

Diode Models. Transistor Models. Measurement of Active Devices. Scattering Parameter Device Characterization.

8. Matching and Biasing Networks.

Impedance Matching Using Discrete Components. Microstrip Line Matching Networks. Amplifier Classes of Operation and Biasing Networks.

9. RF Transistor Amplifier Designs.

Characteristics of Amplifiers. Amplifier Power Relations. Stability Considerations. Constant Gain. Noise Figure Circles. Constant VSWR Circles. Broadband, High-Power, and Multistage Amplifiers.

10. Oscillators and Mixers.

Basic Oscillator Model. High-Frequency Oscillator Configuration. Basic Characteristics of Mixers.

Appendix A. Useful Physical Quantities and Units.

Appendix B. Skin Equation for a Cylindrical Conductor.

Appendix C. Complex Numbers.

Basic Definition. Magnitude Computations. Circle Equation.

Appendix D. Matrix Conversions.

Appendix E. Physical Parameters of Semiconductors.

Appendix F. Long and Short Diode Models.

Long Diode. Short Diode.

Appendix G. Couplers.

Wilkinson Divider. Branch Line Coupler. Lange Coupler.

Appendix H. Noise Analysis.

Basic Definitions. Noisy Two-Port Networks. Noise Figure for Two-Port Network. Noise Figure for Cascaded Multiport Network.

Appendix I. Introduction to Matlab.

Background. Brief Example of Stability Evaluation. Simulation Software on Compact Disk.


For teachers

All the material you need to teach your courses.

Discover teaching material

Published by Pearson (April 9th 2008) - Copyright © 2009