Skip to main content Skip to main navigation
  1. Home
  2. Mathematics & Statistics
  3. Calculus
  4. Calculus
  5. Thomas' Calculus: Multivariable

Thomas' Calculus: Multivariable, 12th edition

  • George Thomas Thomas
  • Maurice D. Weir
  • Joel R. Hass

Published by Pearson (August 31st 2009) - Copyright © 2010

12th edition

Unfortunately, this item is not available in your country.

Overview

This text is designed for the multivariable component a three-semester or four-quarter calculus course (math, engineering, and science majors).

 

Calculus hasn’t changed, but your students have. Today’s students have been raised on immediacy and the desire for relevance, and they come to calculus with varied mathematical backgrounds. Thomas’ Calculus, Twelfth Edition, helps your students successfully generalize and apply the key ideas of calculus through clear and precise explanations, clean design, thoughtfully chosen examples, and superior exercise sets. Thomas offers the right mix of basic, conceptual, and challenging exercises, along with meaningful applications. This significant revision features more examples, more mid-level exercises, more figures, and improved conceptual flow.


The full version of the text contains Chapters 1-16. A separate version covers Single Variable topics (Chapters 1-11). This Multivariable version of the text contains Chapters 11-16. MyMathLab access is not included with this ISBN.

Table of contents

11. Parametric Equations and Polar Coordinates

11.1 Parametrizations of Plane Curves

11.2 Calculus with Parametric Curves

11.3 Polar Coordinates

11.4 Graphing in Polar Coordinates

11.5 Areas and Lengths in Polar Coordinates

11.6 Conic Sections

11.7 Conics in Polar Coordinates

 

12. Vectors and the Geometry of Space

12.1 Three-Dimensional Coordinate Systems

12.2 Vectors

12.3 The Dot Product

12.4 The Cross Product

12.5 Lines and Planes in Space

12.6 Cylinders and Quadric Surfaces

 

13. Vector-Valued Functions and Motion in Space

13.1 Curves in Space and Their Tangents

13.2 Integrals of Vector Functions; Projectile Motion

13.3 Arc Length in Space

13.4 Curvature and Normal Vectors of a Curve

13.5 Tangential and Normal Components of Acceleration

13.6 Velocity and Acceleration in Polar Coordinates

 

14. Partial Derivatives

14.1 Functions of Several Variables

14.2 Limits and Continuity in Higher Dimensions

14.3 Partial Derivatives

14.4 The Chain Rule

14.5 Directional Derivatives and Gradient Vectors

14.6 Tangent Planes and Differentials

14.7 Extreme Values and Saddle Points

14.8 Lagrange Multipliers

14.9 Taylor's Formula for Two Variables

14.10 Partial Derivatives with Constrained Variables

 

15. Multiple Integrals

15.1 Double and Iterated Integrals over Rectangles

15.2 Double Integrals over General Regions

15.3 Area by Double Integration

15.4 Double Integrals in Polar Form

15.5 Triple Integrals in Rectangular Coordinates

15.6 Moments and Centers of Mass

15.7 Triple Integrals in Cylindrical and Spherical Coordinates

15.8 Substitutions in Multiple Integrals

 

16. Integration in Vector Fields

16.1 Line Integrals

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux

16.3 Path Independence, Conservative Fields, and Potential Functions

16.4 Green's Theorem in the Plane

16.5 Surfaces and Area

16.6 Surface Integrals

16.7 Stokes' Theorem

16.8 The Divergence Theorem and a Unified Theory

 

17. Second-Order Differential Equations (online)

17.1 Second-Order Linear Equations

17.2 Nonhomogeneous Linear Equations

17.3 Applications

17.4 Euler Equations

17.5 Power-Series Solutions

For teachers

All the material you need to teach your courses.

Discover teaching material