Elementary Differential Equations, 2nd Edition
©2006 |Pearson | Not yet available
Werner E. Kohler, Virginia Polytechnic Institute and State University
Lee W. Johnson, Virginia Polytechnic Institute and State University
©2006 |Pearson | Not yet available
Introducing Pearson+ 1500+ eTexts and study tools, all in one place. Subscriptions starting at $9.99/month.
K-12 educators: This link is for individuals purchasing with credit cards or PayPal only. Contact your Savvas Learning Company Account General Manager for purchase options.
Elementary Differential Equations integrates the underlying theory, the solution procedures, and the numerical/computational aspects of differential equations in a seamless way. For example, whenever a new type of problem is introduced (such as first-order equations, higher-order equations, systems of differential equations, etc.) the text begins with the basic existence-uniqueness theory. This provides the student the necessary framework to understand and solve differential equations. Theory is presented as simply as possible with an emphasis on how to use it. The Table of Contents is comprehensive and allows flexibility for instructors.
1: INTRODUCTION TO DIFFERENTIAL EQUATIONS
1.1 Examples of Differential Equations
1.2 Direction Fields
2: FIRST ORDER DIFFERENTIAL EQUATIONS
2.1 Introduction
2.2 First Order Linear Differential Equations
2.3 Introduction to Mathematical Models
2.4 Population Dynamics and Radioactive Decay
2.5 First Order Nonlinear Differential Equations
2.6 Separable First Order Equations
2.7 Exact Differential Equations
2.8 The Logistic Population Model
2.9 Applications to Mechanics
2.10 Euler’s Method
2.11 Review Exercises
3: SECOND AND HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS
3.1 Introduction
3.2 The General Solution of Homogeneous Equations
3.3 Constant Coefficient Homogeneous Equations
3.4 Real Repeated Roots; Reduction of Order
3.5 Complex Roots
3.6 Unforced Mechanical Vibrations
3.7 The General Solution of a Linear Nonhomogeneous Equation
3.8 The Method of Undetermined Coefficients
3.9 The Method of Variation of Parameters
3.10 Forced Mechanical Vibrations, Electrical Networks, and Resonance
3.11 Higher Order Linear Homogeneous Differential Equations
3.12 Higher Order Homogeneous Constant Coefficient Differential Equations
3.13 Higher Order Linear Nonhomogeneous Differential Equations
3.14 Review Exercises
4: FIRST ORDER LINEAR SYSTEMS
4.1 Introduction
4.2 Existence and Uniqueness
4.3 Homogeneous Linear Systems
4.4 Constant Coefficient Homogeneous Systems and the Eigenvalue Problem
4.5 Real Eigenvalues and the Phase Plane
4.6 Complex Eigenvalues
4.7 Repeated Eigenvalues
4.8 Nonhomogeneous Linear Systems
4.9 Numerical Methods for Systems of Differential Equations
4.10 The Exponential Matrix and Diagonalization
4.11 Review Exercises
5: LAPLACE TRANSFORMS
5.1 Introduction
5.2 Laplace Transform Pairs
5.3 The Method of Partial Fractions
5.4 Laplace Transforms of Periodic Functions and System Transfer Functions
5.5 Solving Systems of Differential Equations
5.6 Convolution
5.7 The Delta Function and Impulse Response
6: NONLINEAR SYSTEMS
6.1 Introduction
6.2 Equilibrium Solutions and Direction Fields
6.3 Conservative Systems
6.4 Stability
6.5 Linearization and the Local Picture
6.6 Two-Dimensional Linear Systems
6.7 Predator-Prey Population Models
7: NUMERICAL METHODS
7.1 Euler’s Method, Heun’s Method, the Modified Euler’s Method
7.2 Taylor Series Methods
7.3 Runge-Kutta Methods
8: SERIES SOLUTION OF DIFFERENTIAL EQUATIONS
8.1 Introduction
8.2 Series Solutions near an Ordinary Point
8.3 The Euler Equation
8.4 Solutions Near a Regular Singular Point and the Method of Frobenius
8.5 The Method of Frobenius Continued; Special Cases and a Summary
Pearson offers affordable and accessible purchase options to meet the needs of your students. Connect with us to learn more.
K12 Educators: Contact your Savvas Learning Company Account General Manager for purchase options. Instant Access ISBNs are for individuals purchasing with credit cards or PayPal.
Savvas Learning Company is a trademark of Savvas Learning Company LLC.
Kohler & Johnson
©2006  | Pearson
We're sorry! We don't recognize your username or password. Please try again.
The work is protected by local and international copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning.
You have successfully signed out and will be required to sign back in should you need to download more resources.