Skip to main content
Pearson+ LogoPearson+ Logo
Ch. 16 - Regulation of Gene Expression in Bacteria
Klug - Concepts of Genetics  12th Edition
Klug12th EditionConcepts of Genetics ISBN: 9780135564776Not the one you use?Change textbook
Chapter 16, Problem 17

During the reproductive cycle of a temperate bacteriophage, the viral DNA inserts into the bacterial chromosome, where the resultant prophage behaves much like a Trojan horse. It can remain quiescent, or it can become lytic and initiate a burst of progeny viruses. Several operons maintain the prophage state by interacting with a repressor that keeps the lytic cycle in check. Insults (ultraviolet light, for example) to the bacterial cell lead to a partial breakdown of the repressor, which in turn causes the production of enzymes involved in the lytic cycle. As stated in this simple form, would you consider this system of regulation to be operating under positive or negative control?

Verified step by step guidance
1
Understand the key terms: A temperate bacteriophage can integrate its DNA into the bacterial chromosome, forming a prophage. The prophage can remain dormant (lysogenic cycle) or switch to the lytic cycle, where it produces progeny viruses and lyses the host cell.
Review the concept of gene regulation: Positive control involves activators that enhance gene expression, while negative control involves repressors that inhibit gene expression. In this problem, the repressor prevents the lytic cycle from initiating under normal conditions.
Analyze the role of the repressor: The repressor protein binds to specific operons, preventing the expression of genes required for the lytic cycle. This inhibition is a hallmark of negative control, as the repressor actively suppresses gene activity.
Consider the effect of environmental insults: When the bacterial cell is exposed to stress (e.g., UV light), the repressor is partially degraded. This degradation allows the genes for the lytic cycle to be expressed, leading to the production of enzymes and progeny viruses.
Conclude the type of regulation: Since the system relies on a repressor to inhibit the lytic cycle and the removal of the repressor leads to gene expression, this system operates under negative control.

Verified video answer for a similar problem:

This video solution was recommended by our tutors as helpful for the problem above.
Video duration:
48s
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Bacteriophage Life Cycle

The life cycle of bacteriophages includes two main phases: the lytic cycle, where the virus replicates and destroys the host cell, and the lysogenic cycle, where the viral DNA integrates into the host genome as a prophage. Understanding this cycle is crucial for analyzing how temperate bacteriophages can switch between these states based on environmental conditions.
Recommended video:
Guided course
04:29
Bacteriophage Life Cycle

Prophage and Repressor Proteins

A prophage is the dormant form of a bacteriophage that integrates into the bacterial chromosome. Repressor proteins are essential for maintaining the prophage state by inhibiting the expression of genes necessary for the lytic cycle. This regulation allows the virus to remain dormant until conditions trigger a switch to the lytic phase.
Recommended video:

Positive vs. Negative Control in Gene Regulation

Gene regulation can occur through positive or negative control mechanisms. Negative control involves repressors that inhibit gene expression, while positive control involves activators that enhance gene expression. In the context of the question, the breakdown of the repressor leading to lytic cycle activation suggests a negative control system, as the repressor's removal allows for the expression of lytic genes.
Recommended video:
Guided course
07:
Positional Cloning
Related Practice
Textbook Question

Neelaredoxin is a 15-kDa protein that is a gene product common in anaerobic bacteria. It has superoxide-scavenging activity, and it is constitutively expressed. In addition, its expression is not further induced during its exposure to O₂ or H₂O₂ [Silva, G. et al. (2001). J. Bacteriol. 183:4413 4420]. What do the terms constitutively expressed and induced mean in terms of neelaredoxin synthesis?

637
views
Textbook Question

The creation of milk products such as cheeses and yogurts is dependent on the conversion by various anaerobic bacteria, including several Lactobacillus species, of lactose to glucose and galactose, ultimately producing lactic acid. These conversions are dependent on both permease and β-galactosidase as part of the lac operon. After selection for rapid fermentation for the production of yogurt, one Lactobacillus subspecies lost its ability to regulate lac operon expression [Lapierre, L., et al. (2002). J. Bacteriol. 184:928–935]. Would you consider it likely that in this subspecies the lac operon is on or off? What genetic events would likely contribute to the loss of regulation as described above?

756
views
Textbook Question

Both attenuation of the trp operon in E. coli and riboswitches in B. subtilis rely on changes in the secondary structure of the leader regions of mRNA to regulate gene expression. Compare and contrast the specific mechanisms in these two types of regulation with those involving short noncoding RNAs (sRNAs).

887
views
Textbook Question

Bacterial strategies to evade natural or human-imposed antibiotics are varied and include membrane-bound efflux pumps that export antibiotics from the cell. A review of efflux pumps [Grkovic, S., et al. (2002)] states that, because energy is required to drive the pumps, activating them in the absence of the antibiotic has a selective disadvantage. The review also states that a given antibiotic may play a role in the regulation of efflux by interacting with either an activator protein or a repressor protein, depending on the system involved. How might such systems be categorized in terms of negative control (inducible or repressible) or positive control (inducible or repressible)?

651
views
Textbook Question

In a theoretical operon, genes A, B, C, and D represent the repressor gene, the promoter sequence, the operator gene, and the structural gene, but not necessarily in the order named. This operon is concerned with the metabolism of a theoretical molecule (tm). From the data provided in the accompanying table, first decide whether the operon is inducible or repressible. Then assign A, B, C, and D to the four parts of the operon. Explain your rationale. (AE=active enzyme; IE=inactive enzyme; NE=no enzyme.) Genotype tm Present tm Absent A⁺B⁺C⁺D⁺ AE NE A⁻B⁺C⁺D⁺ AE AE A⁺B⁻C⁺D⁺ NE NE A⁺B⁺C⁻D⁺ IE NE A⁺B⁺C⁺D⁻ AE AE A⁻B⁺C⁺D⁺/F'A⁺B⁺C⁺D⁺ AE AE A⁺B⁻C⁺D⁺/F'A⁺B⁺C⁺D⁺ AE NE A⁺B⁺C⁻D⁺/F'A⁺B⁺C⁺D⁺ AE+IE NE A⁺B⁺C⁺D⁻/F'A⁺B⁺C⁺D⁺ AE NE

1275
views
Textbook Question

A bacterial operon is responsible for the production of the biosynthetic enzymes needed to make the hypothetical amino acid tisophane (tis). The operon is regulated by a separate gene, R. The deletion of R causes the loss of enzyme synthesis. In the wild-type condition, when tis is present, no enzymes are made; in the absence of tis, the enzymes are made. Mutations in the operator gene (O⁻) result in repression regardless of the presence of tis. Is the operon under positive or negative control? Propose a model for:

(a) Repression of the genes in the presence of tis in wild-type cells

(b) The mutations.

1011
views