RNA helicases are a class of proteins that bind mRNAs and influence their secondary structures and interactions with other proteins. RNA helicases have been implicated in many steps of RNA regulation such as splicing, decay, and translation. Why might these enzymes be so ubiquitously required for RNA regulation?

The localization and translational control of actin mRNA is important for the migration of fibroblasts and is regulated by the activity of the kinase Src. Src is activated by phosphorylation when cell surface receptors bind to signaling molecules. How might this system lead to a cell migrating in a specific direction? How might the cell migrate away from repulsive signals?
Verified step by step guidance
Verified video answer for a similar problem:
Key Concepts
mRNA Localization and Translational Control
Src Kinase Activation and Signal Transduction
Directional Cell Migration and Response to Guidance Cues
While miRNA response elements (MREs) may be located anywhere within an mRNA, they are most often found outside the coding region in the 5' or 3' UTR. Explain why this is likely the case given that miRNAs often target more than one mRNA.
RNAi is currently being tested as a therapeutic tool for genetic diseases and other conditions. Consider the following: cystic fibrosis caused by loss of function of the CFTR gene, HIV infection, and cancer caused by hyperactivity of a growth factor receptor. Which of these may be treatable by RNAi, and which not? Explain your reasoning.
Explain how the expression of a single gene can be quickly, efficiently, and specifically shut down at the transcriptional, posttranscriptional, and posttranslational stages through the coordinated expression of a transcriptional repressor, an miRNA, and a ubiquitin ligase.
