Skip to main content
Ch.4 - Chemical Reactions and Chemical Quantities
Chapter 4, Problem 45

Iron(III) oxide reacts with carbon monoxide according to the equation: Fe2O3(s) + 3 CO(g) → 2 Fe(s) + 3 CO2(g) A reaction mixture initially contains 22.55 g Fe2O3 and 14.78 g CO. Once the reaction has occurred as completely as possible, what mass (in g) of the excess reactant remains?

Verified step by step guidance
1
Calculate the molar mass of Fe_2O_3 and CO using the periodic table.
Convert the given masses of Fe_2O_3 and CO to moles by dividing by their respective molar masses.
Determine the limiting reactant by comparing the mole ratio of Fe_2O_3 to CO from the balanced equation with the mole ratio from the initial amounts.
Use the stoichiometry of the reaction to calculate how much of the excess reactant is consumed by the limiting reactant.
Subtract the moles of the excess reactant consumed from the initial moles to find the remaining moles, then convert this back to grams using the molar mass.

Verified video answer for a similar problem:

This video solution was recommended by our tutors as helpful for the problem above.
Video duration:
3m
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Stoichiometry

Stoichiometry is the calculation of reactants and products in chemical reactions based on the balanced chemical equation. It allows us to determine the proportions of substances involved in a reaction, which is essential for identifying limiting and excess reactants. In this case, stoichiometry will help us calculate how much of each reactant is consumed and how much remains after the reaction.
Recommended video:
Guided course
01:16
Stoichiometry Concept

Limiting Reactant

The limiting reactant is the substance that is completely consumed first in a chemical reaction, thus determining the maximum amount of product that can be formed. Identifying the limiting reactant is crucial for calculating the amounts of products and any excess reactants left over. In this reaction, we will need to find out which reactant, Fe2O3 or CO, limits the formation of iron and carbon dioxide.
Recommended video:
Guided course
01:30
Limiting Reagent Concept

Excess Reactant

The excess reactant is the substance that remains after the reaction has gone to completion, as it is not completely consumed. Understanding the concept of excess reactants is important for calculating how much of a reactant is left over after the reaction. In this scenario, once we identify the limiting reactant, we can determine the mass of the excess reactant that remains unreacted.
Recommended video:
Guided course
01:30
Limiting Reagent Concept
Related Practice
Textbook Question

Iron(II) sulfide reacts with hydrochloric acid according to the reaction: FeS(s) + 2 HCl(aq) → FeCl2(s) + H2S(g) A reaction mixture initially contains 0.223 mol FeS and 0.652 mol HCl. Once the reaction has occurred as completely as possible, what amount (in moles) of the excess reactant remains?

8939
views
1
rank
Textbook Question

For the reaction shown, calculate the theoretical yield of product (in grams) for each initial amount of reactants. 2 Al(s) + 3 Cl2(g) → 2 AlCl3(s) c. 0.235 g Al, 1.15 g Cl2

643
views
Textbook Question

For the reaction shown, calculate the theoretical yield of the product (in grams) for each initial amount of reactants. Ti(s) + 2 F2( g) → TiF4(s) c. 0.233 g Ti, 0.288 g F2

3446
views
1
rank
Textbook Question

Elemental phosphorus reacts with chlorine gas according to the equation: P4(s) + 6 Cl2( g) → 4 PCl3(l) A reaction mixture initially contains 45.69 g P4 and 131.3 g Cl2. Once the reaction has occurred as completely as possible, what mass (in g) of the excess reactant remains?

3654
views
1
rank
Textbook Question

Magnesium oxide can be made by heating magnesium metal in the presence of oxygen. The balanced equation for the reaction is: 2 Mg(s) + O2(g) → 2 MgO(s) When 10.1 g of Mg reacts with 10.5 g O2, 11.9 g MgO is collected. Determine the limiting reactant, theoretical yield, and percent yield for the reaction.

10217
views
Textbook Question

Urea (CH4N2O) is a common fertilizer that is synthesized by the reaction of ammonia (NH3) with carbon dioxide: 2 NH3(aq) + CO2(aq) → CH4N2O(aq) + H2O(l) In an industrial synthesis of urea, a chemist combines 136.4 kg of ammonia with 211.4 kg of carbon dioxide and obtains 168.4 kg of urea. Determine the limiting reactant, theoretical yield of urea, and percent yield for the reaction.

8569
views
1
comments