Identify the two binomials to be multiplied: \((m - n + k)\) and \((m + 2n - 3k)\).
Apply the distributive property (also known as the FOIL method for binomials) by multiplying each term in the first polynomial by each term in the second polynomial.
Write down all the products obtained from the previous step as a sum:
\(m^2 + 2mn - 3mk - nm - 2n^2 + 3nk + km + 2kn - 3k^2\).
Combine like terms by grouping terms with the same variables and powers to simplify the expression.
Verified video answer for a similar problem:
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
3m
Play a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Polynomial Multiplication
Polynomial multiplication involves multiplying each term in one polynomial by every term in the other polynomial. This process requires applying the distributive property to combine like terms and simplify the expression.
The distributive property states that a(b + c) = ab + ac. It allows you to multiply a single term by each term inside a parenthesis, which is essential when expanding products of polynomials.
Multiply Polynomials Using the Distributive Property
Combining Like Terms
After multiplying polynomials, terms with the same variables and exponents must be combined to simplify the expression. This step ensures the final product is written in its simplest form.