To find the integral of tangent \( x \), we start by rewriting it in terms of sine and cosine. The integral can be expressed as:
\[\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx\]
Next, we use substitution. Let \( u = \cos x \), which gives us \( du = -\sin x \, dx \). Rearranging this, we have \( -du = \sin x \, dx \). Substituting these into the integral, we get:
\[\int \tan x \, dx = -\int \frac{1}{u} \, du\]
This integral is straightforward to evaluate, yielding:
\[-\ln |u| + C\]
Substituting back for \( u \), we find:
\[-\ln |\cos x| + C\]
Using properties of logarithms, we can rewrite this as:
\[\ln |\sec x| + C\]
Thus, the integral of tangent \( x \) is:
\[\int \tan x \, dx = \ln |\sec x| + C\]
Now, let's consider the integral of cotangent \( x \). We rewrite cotangent in terms of sine and cosine:
\[\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx\]
Using a similar substitution, let \( u = \sin x \), which gives \( du = \cos x \, dx \). This allows us to rewrite the integral as:
\[\int \cot x \, dx = \int \frac{1}{u} \, du\]
Evaluating this integral results in:
\[\ln |u| + C\]
Substituting back for \( u \), we have:
\[\ln |\sin x| + C\]
Therefore, the integral of cotangent \( x \) is:
\[\int \cot x \, dx = \ln |\sin x| + C\]
In summary, the integrals of the tangent and cotangent functions are:
\[\int \tan x \, dx = \ln |\sec x| + C\]
\[\int \cot x \, dx = \ln |\sin x| + C\]