67-70. Integrals of the form ∫ sin(mx)cos(nx) dx Use the following product-to-sum identities to evaluate the given integrals:
sin(mx)sin(nx) = ½[cos((m-n)x) - cos((m+n)x)]
sin(mx)cos(nx) = ½[sin((m-n)x) + sin((m+n)x)]
cos(mx)cos(nx) = ½[cos((m-n)x) + cos((m+n)x)]
70. ∫ cos(x)cos(2x) dx

