8. Conic Sections
Ellipses: Standard Form
- Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x +3)²+ 4(y -2)² = 16526views
- Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 4)²/9 + (y +2)² /25= 1554views
- Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. x²/25 + (y -2)² /36= 1586views
- Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x +3)²/9 + (y -2)² = 1548views
- Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 1)²/2 + (y +3)² /5= 1644views
- Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. 9(x − 1)²+4(y+3)² = 36392views
- Textbook QuestionIn Exercises 49–56, identify each equation without completing the square.4x^2 - 9y^2 - 8x - 36y - 68 = 0553views
- Textbook Question
In Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 9x2 +25y² - 36x + 50y – 164 = 0
521views - Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 9x² + 16y² – 18x + 64y – 71 = 0658views
- Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 4x² + y²+ 16x - 6y - 39 = 0534views
- Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 25x²+4y² – 150x + 32y + 189 = 0569views
- Textbook Question
In Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 36x2 +9y2 - 216x = 0
578views - Textbook Question
In Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.
x2 + y2 = 1
x2 + 9y2 = 9
576views - Textbook Question
In Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.
x2/25 + y2/9 = 1
y = 3
495views - Textbook Question
In Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.
4x2 + y2 = 4
2x - y = 2
676views