6. Exponential & Logarithmic Functions
Solving Exponential and Logarithmic Equations
- Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4.(1/3)^x = -3579views
- Textbook Question
Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 5^x=17
565views - Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4.0.05(1.15)^x = 5557views
- Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4.3(2)^(x-2) + 1 = 100570views
- Textbook Question
Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 5ex=23
602views - Textbook Question
Graph f(x) = 2^x and g(x) = log2 x in the same rectangular coordinate system. Use the graphs to determine each function's domain and range.
1345views - Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4.2(1.05)^x + 3 = 10592views
- Textbook Question
Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 3e^5x=1977
702views - Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4.5(1.015)^(x-1980) = 8422views
- Textbook Question
Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. e(1−5x)=793
580views - Textbook Question
Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. e(5x−3) - 2 =10,476
770views - Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4.e^2x - 6e^x + 8 = 0569views
- Textbook Question
Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 7(x+2)=410
612views - Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4. 2e^2x + e^x = 6548views
- Textbook Question
Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 70.3x=813
631views