Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 5^x=17
6. Exponential & Logarithmic Functions
Solving Exponential and Logarithmic Equations
- Textbook Question571views
- Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4.0.05(1.15)^x = 5562views
- Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4.3(2)^(x-2) + 1 = 100575views
- Textbook Question
Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 5ex=23
608views - Textbook Question
Graph f(x) = 2^x and g(x) = log2 x in the same rectangular coordinate system. Use the graphs to determine each function's domain and range.
1379views - Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4.2(1.05)^x + 3 = 10600views
- Textbook Question
Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 3e^5x=1977
713views - Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4.5(1.015)^(x-1980) = 8441views
- Textbook Question
Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. e(1−5x)=793
589views - Textbook Question
Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. e(5x−3) - 2 =10,476
790views - Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4.e^2x - 6e^x + 8 = 0575views
- Textbook Question
Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 7(x+2)=410
622views - Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4. 2e^2x + e^x = 6553views
- Textbook Question
Solve each exponential equation in Exercises 23–48. Express the solution set in terms of natural logarithms or common logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 70.3x=813
639views - Textbook QuestionSolve each equation. In Exercises 11–34, give irrational solutions as decimals correct to the nearest thousandth. In Exercises 35-40, give solutions in exact form. See Examples 1–4.5^2x + 3(5^x) = 28570views