4. Polynomial Functions
Zeros of Polynomial Functions
- Textbook QuestionFind all rational zeros of each function. ƒ(x)=8x^4-14x^3-29x^2-4x+3242views
- Textbook QuestionFactor ƒ(x) into linear factors given that k is a zero. See Example 2. ƒ(x)=x^4+2x^3-7x^2-20x-12; k=-2 (multiplicity 2)804views
- Textbook Question
Show that each polynomial function has a real zero as described in parts (a) and (b). In Exercises 31 and 32, also work part (c). ƒ(x)=3x^3-8x^2+x+2 between -1 and 0
209views - Textbook Question
Show that each polynomial function has a real zero as described in parts (a) and (b). In Exercises 31 and 32, also work part (c). ƒ(x)=3x^3-8x^2+x+2 between 2 and 3
283views - Textbook Question
Show that each polynomial function has a real zero as described in parts (a) and (b). In Exercises 31 and 32, also work part (c). ƒ(x)=3x^3-8x^2+x+2 Find the zero in part (b) to three decimal places.
273views - Textbook Question
Show that each polynomial function has a real zero as described in parts (a) and (b). In Exercises 31 and 32, also work part (c). ƒ(x)=4x3-37x2+50x+60 between 7 and 8
354views - Textbook Question
Show that each polynomial function has a real zero as described in parts (a) and (b). In Exercises 31 and 32, also work part (c). ƒ(x)=4x3-37x2+50x+60 between 2 and 3
215views - Textbook Question
In Exercises 33–38, use Descartes's Rule of Signs to determine the possible number of positive and negative real zeros for each given function. f(x)=2x4−5x3−x2−6x+4
640views - Textbook QuestionFor each polynomial function, one zero is given. Find all other zeros. See Examples 2 and 6. ƒ(x)=-x^4-5x^2-4; -i604views
- Textbook Question
For Exercises 40–46, (a) List all possible rational roots or rational zeros. (b) Use Descartes's Rule of Signs to determine the possible number of positive and negative real roots or real zeros. (c) Use synthetic division to test the possible rational roots or zeros and find an actual root or zero. (d) Use the quotient from part (c) to find all the remaining roots or zeros.
575views - Textbook Question
In Exercises 39–52, find all zeros of the polynomial function or solve the given polynomial equation. Use the Rational Zero Theorem, Descartes's Rule of Signs, and possibly the graph of the polynomial function shown by a graphing utility as an aid in obtaining the first zero or the first root. 4x4−x3+5x2−2x−6=0
566views - Textbook QuestionFor each polynomial function, find all zeros and their multiplicities. ƒ(x)=(2x^2-7x+3)^3(x-2-√5)534views
- Textbook QuestionFind a polynomial function ƒ(x) of degree 3 with real coefficients that satisfies the given conditions. See Example 4. Zeros of -3, 1, and 4; ƒ(2)=30546views
- Textbook Question
Exercises 53–60 show incomplete graphs of given polynomial functions. a) Find all the zeros of each function. b) Without using a graphing utility, draw a complete graph of the function. f(x)=4x3−8x2−3x+9
305views - Textbook Question
Exercises 53–60 show incomplete graphs of given polynomial functions. a) Find all the zeros of each function. b) Without using a graphing utility, draw a complete graph of the function. f(x)=3x5+2x4−15x3−10x2+12x+8
288views