If an angle is in standard position and its terminal side passes through the point on the unit circle, what is the measure of angle in degrees?
Table of contents
- 0. Review of College Algebra4h 43m
- 1. Measuring Angles40m
- 2. Trigonometric Functions on Right Triangles2h 5m
- 3. Unit Circle1h 19m
- 4. Graphing Trigonometric Functions1h 19m
- 5. Inverse Trigonometric Functions and Basic Trigonometric Equations1h 41m
- 6. Trigonometric Identities and More Equations2h 34m
- 7. Non-Right Triangles1h 38m
- 8. Vectors2h 25m
- 9. Polar Equations2h 5m
- 10. Parametric Equations1h 6m
- 11. Graphing Complex Numbers1h 7m
1. Measuring Angles
Angles in Standard Position
Struggling with Trigonometry?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
Given that angle is in standard position and its terminal side passes through the point , what is the measure of angle to the nearest half degree?
A
B
C
D
Verified step by step guidance1
Identify that the angle \( \angle EFD \) is in standard position, meaning its vertex is at the origin and its initial side lies along the positive x-axis.
Recognize that the terminal side of the angle passes through the point \( (8, 8) \), which lies in the first quadrant.
Use the coordinates of the point to find the slope of the terminal side, which is \( \frac{y}{x} = \frac{8}{8} = 1 \).
Recall that the tangent of the angle \( \theta \) formed by the terminal side with the positive x-axis is equal to the slope, so \( \tan(\theta) = 1 \).
Find the angle \( \theta \) by taking the inverse tangent (arctangent) of 1, i.e., \( \theta = \tan^{-1}(1) \), and then round the result to the nearest half degree.
Watch next
Master Drawing Angles in Standard Position with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Multiple Choice
12
views
Angles in Standard Position practice set

