Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Find the solution(s) using the quadratic formula.
A
B
C
D
Verified step by step guidance
1
Identify the coefficients from the quadratic equation \(\frac{3}{2}z^2 - \frac{5}{4}z - 1 = 0\). Here, \(a = \frac{3}{2}\), \(b = -\frac{5}{4}\), and \(c = -1\).
Write down the quadratic formula: \(z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\).
Substitute the values of \(a\), \(b\), and \(c\) into the formula: \(z = \frac{-\left(-\frac{5}{4}\right) \pm \sqrt{\left(-\frac{5}{4}\right)^2 - 4 \cdot \frac{3}{2} \cdot (-1)}}{2 \cdot \frac{3}{2}}\).
Simplify inside the square root (the discriminant): calculate \(b^2 - 4ac = \left(-\frac{5}{4}\right)^2 - 4 \cdot \frac{3}{2} \cdot (-1)\).
Simplify the numerator and denominator separately, then write the two possible solutions for \(z\) using the \(\pm\) sign, representing the two roots of the quadratic equation.