Which of the following best describes an angle in standard position in the coordinate plane?
Table of contents
- 0. Review of College Algebra4h 43m
- 1. Measuring Angles40m
- 2. Trigonometric Functions on Right Triangles2h 5m
- 3. Unit Circle1h 19m
- 4. Graphing Trigonometric Functions1h 19m
- 5. Inverse Trigonometric Functions and Basic Trigonometric Equations1h 41m
- 6. Trigonometric Identities and More Equations2h 34m
- 7. Non-Right Triangles1h 38m
- 8. Vectors2h 25m
- 9. Polar Equations2h 5m
- 10. Parametric Equations1h 6m
- 11. Graphing Complex Numbers1h 7m
1. Measuring Angles
Angles in Standard Position
Struggling with Trigonometry?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
If an angle is in standard position and its terminal side passes through the point on the coordinate plane, what is the measure of the angle in degrees?
A
B
C
D
Verified step by step guidance1
Identify that the angle in standard position has its vertex at the origin (0,0) and its terminal side passes through the point (1,1).
Recall that the measure of the angle \( \theta \) can be found using the tangent function, since \( \tan(\theta) = \frac{y}{x} \) for a point \((x,y)\) on the terminal side.
Calculate \( \tan(\theta) = \frac{1}{1} = 1 \).
Use the inverse tangent function to find the angle: \( \theta = \tan^{-1}(1) \).
Recognize that \( \tan^{-1}(1) \) corresponds to an angle of 45 degrees in the first quadrant, so the measure of the angle is \( 45^\circ \).
Watch next
Master Drawing Angles in Standard Position with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Multiple Choice
11
views
Angles in Standard Position practice set

