Given a triangle with an included angle of and a side of length feet adjacent to the angle, if the area of the triangle is square feet, what is the length of the base adjacent to the angle?
Table of contents
- 0. Review of College Algebra4h 43m
- 1. Measuring Angles40m
- 2. Trigonometric Functions on Right Triangles2h 5m
- 3. Unit Circle1h 19m
- 4. Graphing Trigonometric Functions1h 19m
- 5. Inverse Trigonometric Functions and Basic Trigonometric Equations1h 41m
- 6. Trigonometric Identities and More Equations2h 34m
- 7. Non-Right Triangles1h 38m
- 8. Vectors2h 25m
- 9. Polar Equations2h 5m
- 10. Parametric Equations1h 6m
- 11. Graphing Complex Numbers1h 7m
7. Non-Right Triangles
Area of SAS & ASA Triangles
Struggling with Trigonometry?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
Given a circle with radius and a central angle measured in radians, what is the area of the shaded sector formed by this angle?
A
B
C
D
Verified step by step guidance1
Recall that the area of a full circle is given by the formula \(\text{Area} = \pi \times r^{2}\), where \(r\) is the radius of the circle.
Understand that the central angle \(\theta\) (in radians) represents a fraction of the full circle. Since a full circle corresponds to an angle of \$2\pi\( radians, the fraction of the circle covered by the sector is \)\frac{\theta}{2\pi}$.
To find the area of the sector, multiply the total area of the circle by the fraction of the circle represented by the angle \(\theta\). This gives \(\text{Sector Area} = \left( \frac{\theta}{2\pi} \right) \times \pi r^{2}\).
Simplify the expression by canceling \(\pi\) in numerator and denominator, resulting in \(\text{Sector Area} = \frac{\theta \times r^{2}}{2}\).
Thus, the formula for the area of a sector with radius \(r\) and central angle \(\theta\) (in radians) is \(\boxed{\frac{\theta \times r^{2}}{2}}\).
Watch next
Master Calculating Area of SAS Triangles with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Multiple Choice
15
views
Area of SAS & ASA Triangles practice set

