Given a right triangle where angles and are acute and is supplementary to , which of the following relationships is false?
Table of contents
- 0. Review of College Algebra4h 43m
- 1. Measuring Angles40m
- 2. Trigonometric Functions on Right Triangles2h 5m
- 3. Unit Circle1h 19m
- 4. Graphing Trigonometric Functions1h 19m
- 5. Inverse Trigonometric Functions and Basic Trigonometric Equations1h 41m
- 6. Trigonometric Identities and More Equations2h 34m
- 7. Non-Right Triangles1h 38m
- 8. Vectors2h 25m
- 9. Polar Equations2h 5m
- 10. Parametric Equations1h 6m
- 11. Graphing Complex Numbers1h 7m
2. Trigonometric Functions on Right Triangles
Trigonometric Functions on Right Triangles
Struggling with Trigonometry?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
In the figure above, points and lie on a circle with center . If triangle is a right triangle with right angle at , and , , what is the value of (denoted as )?
A
B
C
D
Verified step by step guidance1
Identify the given elements: triangle OPQ is a right triangle with the right angle at P, and the lengths OP = 5 and OQ = 13 are given.
Recall the Pythagorean theorem for a right triangle, which states that the square of the hypotenuse equals the sum of the squares of the other two sides. Since the right angle is at P, the side opposite P (OQ) is the hypotenuse.
Set up the Pythagorean theorem equation: \(OQ^2 = OP^2 + PQ^2\), where \(PQ\) is the side we want to find (denoted as \(s\)).
Substitute the known values into the equation: \$13^2 = 5^2 + s^2$.
Solve for \(s^2\) by isolating it: \(s^2 = 13^2 - 5^2\). Then, take the square root of both sides to find \(s\).
Watch next
Master Introduction to Trigonometric Functions with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Multiple Choice
17
views
Trigonometric Functions on Right Triangles practice set

