13. Rotational Inertia & Energy

Intro to Rotational Kinetic Energy

# Intro to Rotational Kinetic Energy

Patrick Ford

831

8

6

Was this helpful?

Bookmarked

Hey, guys. In this video, we're gonna talk about rotational kinetic energy, which is the energy associated with the motion of spinning. Let's check it out. All right, So if you remember, if you had linear speed, which is V, you had kinetic energy. Now there's going to be two types of kinetic energy, So we're going to specify that this is linear kinetic energy, and you're used to this equation K equals half MV squared. I put a little elder to indicate that this is the linear type of kinetic energy. And that's because now we have a new one, which is, if you have rotational speed instead of V, it's W or Omega. You have rotational, kinetic energy and instead of Kael, we call it K are now the equation is very similar. It's half now. Instead of using M, we're going to use the rotational equivalent of em, which is I moment of inertia. And instead of V, we're gonna use the rotation equivalent of E, which is omega. So I get this right. So if you remember, the first equation should be easy to remember the second one. Now, on a special case, there's a special situation when you're moving and rotating, So you have a V N a W. This is called rolling motion. And one example of this is if you have a toilet paper roll that is sort of moving this way while rolling rolling around itself. So it's a toilet paper that's rolling on the floor has both kinds of motion. Therefore, it has both kinds of kinetic energy. So I'm gonna say that the K total is K l plus k R cool. And the last thing I will remind you will do a quick example. Um, is that for point masses point masses or tiny objects that don't have a shape? Um, that's have negligible size and radius. They have no volume. The moment of inertia. I is m r squared, where r is a distance between the object in the axis. Okay, remember also that if you have a shape or a rigid body, an object with, um non negligible radius and volume, we're going to get the moment of inertia from a table. Look up, for example, if you have a solid cylinder or a solid disc, same thing the equation for that is half m r squared so a point mass is always this and a some sort of shape will have a different equation each time. Quote. Awesome. So let's go. Very quick example. Here I have a basketball player that spins a basketball around itself on top of his finger. Okay, so I'm gonna try to draw. This is gonna come out terrible. Um, So here's basketball player. Here's his finger, uh, exaggerating some stuff. And here's a basketball and he's rotating the basketball around itself. So it looks kind of like this. Basketball spinning around itself on top of your finger. Right? Um and it says here the ball has a massive 0.62 a diameter of 24 centimeters. So 240.24 m and it spins at 15 radiance per second. Radiance per second is angular speed, angular velocity omega. Okay, 15. And we want to know the balls linear, rotational and total kinetic energy. In other words, we wanna know what is K l What is K R and what is K total? All right, So first things first. You may already have caught this. Um, in physics, we never use diameter. We always use radius. So when you see a diameter you immediately converted to Radius. Radius is half, so it's points 12. Now we're gonna plug into the equation here. Kinetic energy is half M V squared. And this bow has no kinetic energy. No linear, kinetic energy should say, and that's because it spins in place. It's rotating, but it's not actually moving right. It doesn't have has rotational motion, but it doesn't have linear motion. It doesn't have translational motion. It's just stays in place, spinning around itself. So we're gonna say that it has no linear kinetic energy. It does have rotational, kinetic energy because it's spinning around itself, and that's given by half I Omega squared. Okay, now a basketball, A basketball has moments of inertia, the moment of inertia of a hollow sphere. Okay, I didn't give you the equation for that. I didn't explicitly say it was a hollow sphere, but you should know that a basketball is a show. And then there's air inside eso. It is a hollow sphere. So I for a hollow sphere, you would look it up or it would be given to you is two thirds m r square. So what I'm gonna do is I'm gonna plug that in here? Two thirds m r squared and then Omega squared, which I have. Okay, so now we can just plug in numbers, the two cancer with the to and I'm left with one third. The mass is 10.62. The radius is 12 square in omega. We have it right here. 15 15 squared. And if you multiply all of this, I gotta hear you get a 0.67 Jules, 67 jewels. And so that's it. For the last part, we want to do the total kinetic energy. Remember the total kinetic energy? It's just in addition of the two types kinetic, linear, plus kinetic rotational, there is no kinetic linear. So the total kinetic energy is just the 0.67 that's coming from the rotational kinetic energy. Cool. So that's how this stuff works. Hopefully, this makes sense. Let me know if you have any questions and let's keep going

Related Videos

Related Practice

Showing 1 of 5 videos