Hey, guys. So for the next couple videos, we're gonna see how motion in a two dimensional plane works or sometimes called motion at an angle, because you're gonna need to know how to solve these kinds of problems. So I want to do in this first video is just give you a brief overview of what motion in two D is really all about. Let's check it out. So let's say I had a problem in which I had to move from Point A to Point C. Now, when we studied one dimensional motion, we were restricted into either the X or the Y axis. So we're kind of locked. I could only move in the X axis or the horizontal axis or in the y axis or the vertical axis. Now, both of these examples off one dimensional motion because you're again locked into either the X or the Y. Now, if you weren't restricted to the X or Y, if you could actually move freely, then you could just move straight from a to C at some angle feta. And we saw how this worked when we studied vectors. So this is just a two dimensional motion and notice how we just come up with another triangle. So really motion at an angle, like going from A to C, is really just combining to one dimensional motions. It's as if you went from A to B and then B two c at the same time. So really, this just turns into a bunch of triangles, so we're just gonna combine motion with vectors equations. So here's the deal. Whenever we have motion in two dimensions, we're gonna break it down into X and Y, and then we're gonna use combinations off all of the motion equations, basically all of our average velocities and our, um, equations with our vectors equations, basically everything that that tells us how to deal with triangles. That's really all there is to it. So let's go ahead and check it out.