In a study, the data you collect is the number of traffic tickets each person has received. What is the level of measurement for this variable?
Table of contents
- 1. Intro to Stats and Collecting Data1h 14m
- 2. Describing Data with Tables and Graphs1h 55m
- 3. Describing Data Numerically2h 5m
- 4. Probability2h 16m
- 5. Binomial Distribution & Discrete Random Variables3h 6m
- 6. Normal Distribution and Continuous Random Variables2h 11m
- 7. Sampling Distributions & Confidence Intervals: Mean3h 23m
- Sampling Distribution of the Sample Mean and Central Limit Theorem19m
- Distribution of Sample Mean - Excel23m
- Introduction to Confidence Intervals15m
- Confidence Intervals for Population Mean1h 18m
- Determining the Minimum Sample Size Required12m
- Finding Probabilities and T Critical Values - Excel28m
- Confidence Intervals for Population Means - Excel25m
- 8. Sampling Distributions & Confidence Intervals: Proportion1h 25m
- 9. Hypothesis Testing for One Sample3h 29m
- 10. Hypothesis Testing for Two Samples4h 50m
- Two Proportions1h 13m
- Two Proportions Hypothesis Test - Excel28m
- Two Means - Unknown, Unequal Variance1h 3m
- Two Means - Unknown Variances Hypothesis Test - Excel12m
- Two Means - Unknown, Equal Variance15m
- Two Means - Unknown, Equal Variances Hypothesis Test - Excel9m
- Two Means - Known Variance12m
- Two Means - Sigma Known Hypothesis Test - Excel21m
- Two Means - Matched Pairs (Dependent Samples)42m
- Matched Pairs Hypothesis Test - Excel12m
- 11. Correlation1h 24m
- 12. Regression1h 50m
- 13. Chi-Square Tests & Goodness of Fit2h 21m
- 14. ANOVA1h 57m
4. Probability
Basic Concepts of Probability
Struggling with Statistics?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
Which of the following is not a requirement of the binomial probability distribution?
A
Each trial results in only two possible outcomes: success or failure.
B
can change from trial to trial.
C
There must be a fixed number of trials.
D
Each trial must be independent of the others.
Verified step by step guidance1
Understand that the binomial probability distribution models the number of successes in a fixed number of independent trials, where each trial has only two possible outcomes: success or failure.
Recall the key requirements of a binomial distribution: (1) Each trial results in only two possible outcomes (success or failure), (2) The number of trials, denoted by \(n\), is fixed in advance, (3) Each trial is independent of the others, and (4) The probability of success, denoted by \(p\), remains constant for each trial.
Analyze the given options and identify which one contradicts these requirements. Specifically, check if the probability of success changes from trial to trial, which would violate the assumption of a constant probability \(p\).
Conclude that the statement 'The probability of success can change from trial to trial' is not a requirement of the binomial distribution; in fact, it is a condition that must not happen for the binomial model to apply.
Summarize that all other options are true requirements of the binomial distribution, while the changing probability of success is not.
Watch next
Master Introduction to Probability with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Multiple Choice
13
views
Basic Concepts of Probability practice set

