60–62. {Use of Tech} Multiple tangent lines Complete the following steps. <IMAGE>
b. Graph the tangent lines on the given graph.
x+y³−y=1; x=1
60–62. {Use of Tech} Multiple tangent lines Complete the following steps. <IMAGE>
b. Graph the tangent lines on the given graph.
x+y³−y=1; x=1
60–62. {Use of Tech} Multiple tangent lines Complete the following steps. <IMAGE>
a. Find equations of all lines tangent to the curve at the given value of x.
4x³ =y²(4−x); x=2 (cissoid of Diocles)
60–62. {Use of Tech} Multiple tangent lines Complete the following steps. <IMAGE>
b. Graph the tangent lines on the given graph.
4x³ =y²(4−x); x=2 (cissoid of Diocles)
Witch of Agnesi Let y(x²+4)=8 (see figure). <IMAGE>
a. Use implicit differentiation to find dy/dx.
Witch of Agnesi Let y(x²+4)=8 (see figure). <IMAGE>
b. Find equations of all lines tangent to the curve y(x²+4)=8 when y=1.
Witch of Agnesi Let y(x²+4)=8 (see figure). <IMAGE>
d. Verify that the results of parts (a) and (c) are consistent.
73–78. {Use of Tech} Normal lines A normal line at a point P on a curve passes through P and is perpendicular to the line tangent to the curve at P (see figure). Use the following equations and graphs to determine an equation of the normal line at the given point. Illustrate your work by graphing the curve with the normal line. <IMAGE>
Exercise 46
73–78. {Use of Tech} Normal lines A normal line at a point P on a curve passes through P and is perpendicular to the line tangent to the curve at P (see figure). Use the following equations and graphs to determine an equation of the normal line at the given point. Illustrate your work by graphing the curve with the normal line. <IMAGE>
Exercise 48
79–82. {Use of Tech} Visualizing tangent and normal lines <IMAGE>
a. Determine an equation of the tangent line and the normal line at the given point (x0, y0) on the following curves. (See instructions for Exercises 73–78.)
x⁴ = 2x²+2y²; (x0, y0)=(2, 2) (kampyle of Eudoxus)
79–82. {Use of Tech} Visualizing tangent and normal lines
b. Graph the tangent and normal lines on the given graph.
x⁴ = 2x²+2y²; (x0, y0)=(2, 2) (kampyle of Eudoxus)
79–82. {Use of Tech} Visualizing tangent and normal lines <IMAGE>
a. Determine an equation of the tangent line and the normal line at the given point (x0, y0) on the following curves. (See instructions for Exercises 73–78.)
(x²+y²)² = 25/3 (x²-y²); (x0,y0) = (2,-1) (lemniscate of Bernoulli)
58–59. Carry out the following steps.
a. Use implicit differentiation to find dy/dx.
xy^5/2+x^3/2y=12; (4, 1)
58–59. Carry out the following steps.
b. Find the slope of the curve at the given point.
xy^5/2+x^3/2y=12; (4, 1)
90–93. {Use of Tech} Work carefully Proceed with caution when using implicit differentiation to find points at which a curve has a specified slope. For the following curves, find the points on the curve (if they exist) at which the tangent line is horizontal or vertical. Once you have found possible points, make sure that they actually lie on the curve. Confirm your results with a graph.
x²(3y²−2y³) = 4
90–93. {Use of Tech} Work carefully Proceed with caution when using implicit differentiation to find points at which a curve has a specified slope. For the following curves, find the points on the curve (if they exist) at which the tangent line is horizontal or vertical. Once you have found possible points, make sure that they actually lie on the curve. Confirm your results with a graph.
x(1−y²)+y³=0