Evaluate the integrals in Exercises 1–22.
∫ sin⁴(2x) cos(2x) dx
Evaluate the integrals in Exercises 1–22.
∫ sin⁴(2x) cos(2x) dx
Evaluate the integrals in Exercises 1–22.
∫ cos³(4x) dx
Evaluate the integrals in Exercises 1–22.
∫ cos³(2x) sin⁵(2x) dx
Evaluate the integrals in Exercises 1–22.
∫ 7cos⁷(t) dt
Evaluate the integrals in Exercises 33–52.
∫ sec(x) tan²(x) dx
Evaluate the integrals in Exercises 33–52.
∫ sec³(x) tan³(x) dx
Evaluate the integrals in Exercises 31–56. Some integrals do not require integration by parts.
∫ x² sin(x³) dx
Evaluate the integrals in Exercises 33–52.
∫ sec⁴(x) tan²(x) dx
Evaluate the integrals in Exercises 33–52.
∫ eˣ sec³(eˣ) dx
Evaluate the integrals in Exercises 33–52.
∫ tan⁴(x) sec³(x) dx
Evaluate the integrals in Exercises 33–52.
∫ sec⁶(x) dx
Use any method to evaluate the integrals in Exercises 65–70.
∫ sin³(x) / cos⁴(x) dx
Use any method to evaluate the integrals in Exercises 65–70.
∫ cot(x) / cos²(x) dx
Evaluate the integrals in Exercises 53–58.
∫ sin(2x) cos(3x) dx
The integrals in Exercises 1–44 are in no particular order. Evaluate each integral using any algebraic method, trigonometric identity, or substitution you think is appropriate.
∫ (tan θ + 3 / sin θ) dθ