Use the given substitution to evaluate the following indefinite integrals. Check your answer by differentiating.
β« 8π cos (4πΒ² + 3) dπ, u = 4πΒ² + 3
Use the given substitution to evaluate the following indefinite integrals. Check your answer by differentiating.
β« 8π cos (4πΒ² + 3) dπ, u = 4πΒ² + 3
Use Table 5.6 to evaluate the following indefinite integrals.
(d) β« cos π/7 dπ
Indefinite integrals Use a change of variables or Table 5.6 to evaluate the following indefinite integrals. Check your work by differentiating.
β« π csc πΒ² cot πΒ² dπ
Indefinite integrals Use a change of variables or Table 5.6 to evaluate the following indefinite integrals. Check your work by differentiating.
β« sec 4w tan 4w dw
Indefinite integrals Use a change of variables or Table 5.6 to evaluate the following indefinite integrals. Check your work by differentiating.
β« secΒ² (10π + 7) dπ
Indefinite integrals Use a change of variables or Table 5.6 to evaluate the following indefinite integrals. Check your work by differentiating.
β« (sinβ΅ π + 3 sinΒ³ πβ sin π) cos π dπ
Integrals with sinΒ² π and cosΒ² π Evaluate the following integrals.
β« sinΒ² π dπ
76-81. Table of integrals Use a table of integrals to evaluate the following integrals.
79. β« secβ΅x dx
Explain why or why not. Determine whether the following statements are true and give an explanation or counterexample.
d. β«2 sin x cos x dx = β(1/2) cos 2x + C.
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. Assume Ζ, Ζ', and Ζ'' are continuous functions for all real numbers.
(c) β« sin 2π dπ = 2 β« sin π dπ .
Evaluate the integrals in Exercises 39β56.
49. β«3secΒ²t/(6 + 3tan(t)) dt
Evaluate the integrals in Exercises 39β56.
56. β«sec(x)dx/β(ln(sec(x)+tan(x)))
Evaluate the integrals in Exercises 41β60.
41. β«sinh(2x)dx
Evaluate the integrals in Exercises 41β60.
43. β«6cosh(x/2 - ln3)dx
Evaluate the integrals in Exercises 41β60.
45. β«tanh(x/7)dx