Evaluate the integrals in Exercises 51–56 by making a substitution (possibly trigonometric) and then applying a reduction formula.
∫ (from 0 to 1/√3) dt / (t² + 1)^(7/2)
Evaluate the integrals in Exercises 51–56 by making a substitution (possibly trigonometric) and then applying a reduction formula.
∫ (from 0 to 1/√3) dt / (t² + 1)^(7/2)
7–84. Evaluate the following integrals.
11. ∫ from 0 to π/4 (sec x – cos x)² dx
Evaluate the indefinite integral.
Evaluate the indefinite integral.
Evaluate the indefinite integral.
Evaluate the indefinite integral.
Evaluate the indefinite integral.
Evaluate the indefinite integral.
Evaluate the definite integral.
Evaluate the definite integral.
Evaluate the definite integral.
Evaluate the indefinite integral.
7–64. Integration review Evaluate the following integrals.
16. ∫ from 0 to 1 of (t² / (1 + t⁶)) dt
7–64. Integration review Evaluate the following integrals.
18. ∫ from 3 to 7 of (t - 6) * √(t - 3) dt
7–64. Integration review Evaluate the following integrals.
32. ∫ from 0 to 2 of x / (x² + 4x + 8) dx