{Use of Tech} Fresnel integrals The theory of optics gives rise to the two Fresnel integrals
S(x) = ∫₀ˣ sin t² dt and C(x) = ∫₀ˣ cos t² dt
a. Compute S′(x) and C′(x).
{Use of Tech} Fresnel integrals The theory of optics gives rise to the two Fresnel integrals
S(x) = ∫₀ˣ sin t² dt and C(x) = ∫₀ˣ cos t² dt
a. Compute S′(x) and C′(x).
Generalizing the Mean Value Theorem for Integrals Suppose ƒ and g are continuous on [a, b] and let h(𝓍) = (𝓍―b) ∫ₐˣ ƒ(t) dt + (𝓍―a) ∫ₓᵇg(t)dt.
(b) Show that there is a number c in (a, b) such that ∫ₐᶜ ƒ(t) dt = ƒ(c) (b ― c)
(Source: The College Mathematics Journal, 33, 5, Nov 2002)
Differentiating Integrals
In Exercises 75–78, find dy/dx.
________
y = ∫₂ˣ √ 2 + cos³t dt
Find dy/dx if y = ∫ₓ¹ √(1 + t²)dt.
Explain the main steps in your calculation.
Evaluate the integrals in Exercises 111–114.
111. ∫₁^(ln x) (1 / t) dt,x > 1
Evaluate the integrals in Exercises 111–114.
113. ∫₁^(1/x) (1 / t) dt,x > 0
For Exercises 127 and 128 find a function f satisfying each equation.
128. f(x) = e² + ∫₁ˣ f(t) dt
Evaluate the integrals in Exercises 111–114.
112. ∫₁^(eˣ) (1 / t) dt
143.
a. Show that ∫ ln(x) dx = x ln(x) − x + C.
Evaluate the integrals in Exercises 47–68.
∫₀^π/3 sec² θ dθ
Evaluate the integrals in Exercises 47–68.
∫⁰-π/3 sec x tan x dx