Let R be the region bounded by the following curves. Find the volume of the solid generated when R is revolved about the given line.
y=2 sin x and y=0 on [0,π]; about y=−2
Let R be the region bounded by the following curves. Find the volume of the solid generated when R is revolved about the given line.
y=2 sin x and y=0 on [0,π]; about y=−2
Let R be the region bounded by the following curves. Find the volume of the solid generated when R is revolved about the given line.
y=x and y=1+x/2; about y=3
The region R is bounded by the graph of f(x)=2x(2−x) and the x-axis. Which is greater, the volume of the solid generated when R is revolved about the line y=2 or the volume of the solid generated when R is revolved about the line y=0? Use integration to justify your answer.
A right circular cylinder with height R and radius R has a volume of VC=πR^3 (height = radius).
a. Find the volume of the cone that is inscribed in the cylinder with the same base as the cylinder and height R. Express the volume in terms of VC.
A right circular cylinder with height R and radius R has a volume of VC=πR^3 (height = radius).
b. Find the volume of the hemisphere that is inscribed in the cylinder with the same base as the cylinder. Express the volume in terms of VC.
A hemispherical bowl of radius 8 inches is filled to a depth of h inches, where 0≤h≤8 0 ≤ ℎ ≤ 8 . Find the volume of water in the bowl as a function of h. (Check the special cases h=0 and h=8.)
Find the volume of the torus formed when the circle of radius 2 centered at (3, 0) is revolved about the y-axis. Use geometry to evaluate the integral.
A 1.5-mm layer of paint is applied to one side of the following surfaces. Find the approximate volume of paint needed. Assume x and y are measured in meters.
The spherical zone generated when the curve y=√8x−x^2 on the interval 1≤x≤7 is revolved about the x-axis
Determine whether the following statements are true and give an explanation or counterexample.
a. If the curve y=f(x) on the interval [a, b] is revolved about the y-axis, the area of the surface generated is ∫f(b)f(a) 2πf(y)√1+f′(y)^2 dy.
Determine whether the following statements are true and give an explanation or counterexample.
b. If f is not one-to-one on the interval [a, b], then the area of the surface generated when the graph of f on [a, b] is revolved about the x-axis is not defined.
Determine whether the following statements are true and give an explanation or counterexample.
c. Let f(x)=12x^2. The area of the surface generated when the graph of f on [−4, 4] is revolved about the x-axis is twice the area of the surface generated when the graph of f on [0, 4] is revolved about the x-axis.
Determine whether the following statements are true and give an explanation or counterexample.
d. Let f(x)=12x^2.. The area of the surface generated when the graph of f on [−4, 4] is revolved about the y-axis is twice the area of the surface generated when the graph of f on [0, 4] is revolved about the y-axis.
Consider the following curves on the given intervals.
b. Use a calculator or software to approximate the surface area.
y=cos x, for 0≤x≤π/2; about the x-axis
Consider the following curves on the given intervals.
a. Write the integral that gives the area of the surface generated when the curve is revolved about the given axis.
y=tan x , for 0≤x≤π/4; about the x-axis
Consider the following curves on the given intervals.
b. Use a calculator or software to approximate the surface area.
y=tan x , for 0≤x≤π/4; about the x-axis