Let f(x) = (4x³ + x² + 4x + 2) / (x² + 1). Use long division to show that f(x) = 4x + 1 + 1 / (x² + 1) and use this result to evaluate ∫f(x) dx.
7. Antiderivatives & Indefinite Integrals
Indefinite Integrals
- Textbook Question50views
- Textbook Question
7–64. Integration review Evaluate the following integrals.
20. ∫ eˣ (1 + eˣ)⁹ (1 - eˣ) dx
21views - Textbook Question
7–64. Integration review Evaluate the following integrals.
28. ∫ (3x + 1) / √(4 - x²) dx
21views - Textbook Question
7–64. Integration review Evaluate the following integrals.
36. ∫ (t³ - 2) / (t + 1) dt
41views - Textbook Question
7–64. Integration review Evaluate the following integrals.
38. ∫ x / (x⁴ + 2x² + 1) dx
24views - Textbook Question
7–64. Integration review Evaluate the following integrals.
40. ∫ (1 - x) / (1 - √x) dx
29views - Textbook Question
7–64. Integration review Evaluate the following integrals.
47. ∫ dx / (x⁻¹ + 1)
22views - Textbook Question
7–64. Integration review Evaluate the following integrals.
49. ∫ √(9 + √(t + 1)) dt
34views - Textbook Question
7–64. Integration review Evaluate the following integrals.
57. ∫ dx / (x¹⸍² + x³⸍²)
29views - Textbook Question
70. Different methods Let I=∫(x+2)/(x+4)dx.
b. Evaluate I without performing long division on the integrand.
26views - Textbook Question
76. Different Substitutions
b. Show that ∫(1/√(x - x²)) dx = 2 sin⁻¹√x + C using substitution u = √x
26views - Textbook Question
7–84. Evaluate the following integrals.
13. ∫ [1 / (eˣ √(1 – e²ˣ))] dx
34views - Textbook Question
7–84. Evaluate the following integrals.
25. ∫ [1 / (x√(1 - x²))] dx
45views - Textbook Question
7–64. Integration review Evaluate the following integrals.
62. ∫ (-x⁵ - x⁴ - 2x³ + 4x + 3) / (x² + x + 1) dx
25views - Textbook Question
68. Different methods
b. Evaluate ∫(cot x csc² x) dx using the substitution u=cscx.
25views