Textbook Question
Solve the initial value problems in Exercises 53–56 for y as a function of x.
(x² + 1)² (dy/dx) = √(x² + 1), where y(0) = 1
4
views
Solve the initial value problems in Exercises 53–56 for y as a function of x.
(x² + 1)² (dy/dx) = √(x² + 1), where y(0) = 1
In Exercises 129–132 solve the initial value problem.
129. dy/dx = e^(-x-y-2), y(0) = -2
In Exercises 129–132 solve the initial value problem.
131. x dy - (y + √y)dx = 0, y(1) = 1
Solve the initial value problems in Exercises 67–70 for x as a function of t.
(t + 1) (dx/dt) = x² + 1 (for t > -1), x(0) = 0
Solve the initial value problems in Exercises 71–90.
y⁽⁴⁾ = −sin t + cos t;
y′′′(0) =7, y′′(0) = y′(0) = −1, y(0) = 0