Taylor series and interval of convergence
a. Use the definition of a Taylor/Maclaurin series to find the first four nonzero terms of the Taylor series for the given function centered at a.
f(x) = ln (x − 2), a = 3
Taylor series and interval of convergence
a. Use the definition of a Taylor/Maclaurin series to find the first four nonzero terms of the Taylor series for the given function centered at a.
f(x) = ln (x − 2), a = 3
Taylor series and interval of convergence
b. Write the power series using summation notation.
f(x) = ln (x − 2), a = 3
Working with binomial series Use properties of power series, substitution, and factoring to find the first four nonzero terms of the Maclaurin series for the following functions. Give the interval of convergence for the new series (Theorem 11.4 is useful). Use the Maclaurin series
√(1 + x) = 1 + x/2 − x²/8 + x³/16 − ⋯, −1 ≤ x ≤ 1.
√(9 − 9x)
Working with binomial series Use properties of power series, substitution, and factoring to find the first four nonzero terms of the Maclaurin series for the following functions. Use the Maclaurin series
(1 + x)⁻² = 1 − 2x + 3x² − 4x³ + ⋯, for −1 < x < 1.
(1 + 4x)⁻²
Taylor series and interval of convergence
c. Determine the interval of convergence of the series.
f(x) = cosh 3x, a = 0
Taylor series and interval of convergence
c. Determine the interval of convergence of the series.
f(x) = ln (x − 2), a = 3
Taylor series
b. Write the power series using summation notation.
f(x)=sin x, a = π/2
Taylor series and interval of convergence
b. Write the power series using summation notation.
f(x) = cosh 3x, a = 0
Power series from the geometric series Use the geometric series a Σₖ ₌ ₀ ∞ (x)ᵏ = 1/(1 - x), for |x| < 1, to determine the Maclaurin series and the interval of convergence for the following functions.
ƒ(x) = 1/(1 - x²)
Power series from the geometric series Use the geometric series a Σₖ ₌ ₀ ∞ (x)ᵏ = 1/(1 - x), for |x| < 1, to determine the Maclaurin series and the interval of convergence for the following functions.
ƒ(x) = 1/(1 + 5x)
Power series from the geometric series Use the geometric series a Σₖ ₌ ₀ ∞ (x)ᵏ = 1/(1 - x), for |x| < 1, to determine the Maclaurin series and the interval of convergence for the following functions.
ƒ(x) = ln (1 - 4x)
Use of Tech Linear and quadratic approximation
a. Find the linear approximating polynomial for the following functions centered at the given point a.
b. Find the quadratic approximating polynomial for the following functions centered at a.
c Use the polynomials obtained in parts (a) and (b) to approximate the given quantity.
f(x)=e⁻²ˣ, a=0; approximate e⁻⁰ᐧ².
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
b. Let f(x)=x⁵−1 The Taylor polynomial for f of order 10 centered at 0 is f itself.
Matching functions with polynomials Match functions a–f with Taylor polynomials A–F (all centered at 0). Give reasons for your choices.
d. 1/(1 + 2x)
A. p₂(x)= 1 + 2x + 2x²
B. p₂(x) = 1 − 6x + 24x²
C. p₂(x) = 1 + x − x²/2
D. p₂(x) = 1 − 2x + 4x²
E. p₂(x) = 1 − x + (3/2)x²
F. p₂(x) = 1 − 2x + 2x²
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
a. Only even powers of x appear in the Taylor polynomials for f(x)=e⁻²ˣ centered at 0.