82-88. Improper integrals Evaluate the following integrals or show that the integral diverges.
82. ∫ (from -∞ to -1) dx/(x - 1)⁴
82-88. Improper integrals Evaluate the following integrals or show that the integral diverges.
82. ∫ (from -∞ to -1) dx/(x - 1)⁴
82-88. Improper integrals Evaluate the following integrals or show that the integral diverges.
84. ∫ (from 0 to π) sec²x dx*(Note: Potential improperness at x = π/2)*
82-88. Improper integrals Evaluate the following integrals or show that the integral diverges.
86. ∫ (from -∞ to ∞) x³/(1 + x⁸) dx
89–91. Comparison Test Determine whether the following integrals converge or diverge.
89. ∫ (from 1 to ∞) dx/(x⁵ + x⁴ + x³ + 1)
92. Integral with a parameter For what values of p does the integral
∫ (from 1 to ∞) dx/xlnᵖ(x) converge, and what is its value (in terms of p)?
What are the two general ways in which an improper integral may occur?
7–58. Improper integrals Evaluate the following integrals or state that they diverge.
28. ∫ (from 1 to ∞) tan⁻¹(s)/(s² + 1) ds
7–58. Improper integrals Evaluate the following integrals or state that they diverge.
31. ∫ (from 1 to ∞) 1/[v(v + 1)] dv
108. Draining a tank Water is drained from a 3000-gal tank at a rate that starts at 100 gal/hr and decreases continuously by 5%/hr. If the drain is left open indefinitely, how much water drains from the tank? Can a full tank be emptied at this rate?
101. Many methods needed Show that the integral from ∫(from 0 to ∞)(sqrt(x) * ln x) / (1 + x)^2 dx equals pi, following these steps
d. Evaluate the remaining integral using the change of variables z = sqrt(x)
102–106. Laplace transforms A powerful tool in solving problems in engineering and physics is the Laplace transform. Given a function f(t), the Laplace transform is a new function F(s) defined by F(s) = ∫[0 to ∞] e^(-st) f(t) dt, where we assume s is a positive real number. For example, to find the Laplace transform of f(t) = e^(-t), the following improper integral is evaluated using integration by parts:
F(s) = ∫[0 to ∞] e^(-st) e^(-t) dt = ∫[0 to ∞] e^(-(s+1)t) dt = 1/(s+1).
Verify the following Laplace transforms, where a is a real number.
104. f(t) = t → F(s) = 1/s²
94. The family f(x) = 1/xᵖ revisited Consider the family of functions f(x) = 1/xᵖ, where p is a real number.
For what values of p does the integral ∫(1 to ∞) 1/xᵖ dx exist?
What is its value when it exists?
91. [Use of Tech] Regions bounded by exponentials Let a > 0 and let R be the region bounded by the graph of y = e^(-a·x) and the x-axis
on the interval [b, ∞).
a. Find A(a,b), the area of R as a function of a and b.
91. [Use of Tech] Regions bounded by exponentials Let a > 0 and let R be the region bounded by the graph of y = e^(-a·x) and the x-axis
on the interval [b, ∞).
c. Find the minimum value b* such that when b > b*, there exists some a > 0 where A(a,b) = 2.
Gaussians An important function in statistics is the Gaussian (or normal distribution, or bell-shaped curve), f(x) = e^(-ax²).
c. Complete the square to evaluate ∫ from -∞ to ∞ of e^(-(ax² + bx + c)) dx, where a > 0, b, and c are real numbers.