7-56. Trigonometric substitutions Evaluate the following integrals using trigonometric substitution.
44. ∫ 1/√(16 + 4x²) dx
7-56. Trigonometric substitutions Evaluate the following integrals using trigonometric substitution.
44. ∫ 1/√(16 + 4x²) dx
60–69. Completing the square Evaluate the following integrals.
68. ∫ dx / sqrt((x - 1)(3 - x))
Variations on the substitution method Evaluate the following integrals.
∫ 𝓍/(∛𝓍 + 4) d𝓍
Variations on the substitution method Evaluate the following integrals.
∫ (eˣ ― e⁻ˣ)/ (eˣ + e⁻ˣ) d𝓍
Variations on the substitution method Evaluate the following integrals.
∫ (𝒵 + 1) √(3𝒵 + 2) d𝒵
Multiple substitutions If necessary, use two or more substitutions to find the following integrals.
∫ 𝓍 sin⁴ 𝓍² cos 𝓍² d𝓍 (Hint: Begin with u = 𝓍², and then use v = sin u .)
Multiple substitutions If necessary, use two or more substitutions to find the following integrals.
∫ d𝓍 / [√1 + √(1 + 𝓍)] (Hint: Begin with u = √(1 + 𝓍 .)
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
a. ∫(3/(x² + 4)) dx = ∫(3/x²) dx + ∫(3/4) dx.
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
d. ∫(1/eˣ) dx = ln eˣ + C.
Indefinite integrals Use a change of variables or Table 5.6 to evaluate the following indefinite integrals. Check your work by differentiating.
∫ sin 𝓍 sec⁸ 𝓍 d𝓍
37–56. Integrals Evaluate each integral.
∫ dx/x√(16 + x²)
59. Two Methods
b. Evaluate ∫(x / √(x + 1)) dx using substitution.
General results Evaluate the following integrals in which the function ƒ is unspecified. Note that ƒ⁽ᵖ⁾ is the pth derivative of ƒ and ƒᵖ is the pth power of ƒ. Assume ƒ and its derivatives are continuous for all real numbers.
∫ (5 ƒ³ (𝓍) + 7ƒ² (𝓍) + ƒ (𝓍 )) ƒ'(𝓍) d𝓍
81. Possible and impossible integrals
Let Iₙ = ∫ xⁿ e⁻ˣ² dx, where n is a nonnegative integer.
a. I₀ = ∫ e⁻ˣ² dx cannot be expressed in terms of elementary functions. Evaluate I₁.
74. A secant reduction formula
Prove that for positive integers n ≠ 1,
∫ secⁿ x dx = (secⁿ⁻² x tan x)/(n − 1) + (n − 2)/(n − 1) ∫ secⁿ⁻² x dx.
(Hint: Integrate by parts with u = secⁿ⁻² x and dv = sec² x dx.)