Multiple ChoiceA satellite captures images of a tsunami, and properties of the tsunami can be found from these images, providing important information to people who need to evacuate coastal areas. If satellite images of a tsunami show the distance from one peak to another is 500 km, and the period is 1 hour, how much time do people have to evacuate if the tsunami is found to be 100 km off shore?43951Has a video solution.
Multiple ChoiceA string with a linear mass density of 1.6 g/m is under 4.0N of tension. How long would it take a wave pulse on this string to travel 3.0m?85
Textbook QuestionA horizontal string tied at both ends is vibrating in its fundamental mode. The traveling waves have speed v, frequency f, amplitude A, and wavelength λ. (a) Calculate the maximum transverse velocity and maximum transverse acceleration of points located at (i) x = λ/2, (ii) x = λ/4, and (iii) x = λ/8, from the left-hand end of the string.84Has a video solution.
Textbook QuestionOne string of a certain musical instrument is 75.0 cm long and has a mass of 8.75 g. It is being played in a room where the speed of sound is 344 m/s. (a) To what tension must you adjust the string so that, when vibrating in its second overtone, it produces sound of wavelength 0.765 m? (Assume that the break-ing stress of the wire is very large and isn't exceeded.) (b) What frequency sound does this string produce in its fundamental mode of vibration?533Has a video solution.
Textbook QuestionA horizontal string tied at both ends is vibrating in its fundamental mode. The traveling waves have speed v, frequency f, amplitude A, and wavelength λ. (c) How much time does it take the string to go from its largest upward displacement to its largest downward displacement at the points located at (i) x = λ/2, (ii) x = λ/4, and (iii) x = λ/8, from the left-hand end of the string.82Has a video solution.
Textbook QuestionA horizontal string tied at both ends is vibrating in its fundamental mode. The traveling waves have speed v, frequency f, amplitude A, and wavelength λ. (b) What is the amplitude of the motion at the points located at (i) x = λ/2, (ii) x = λ/4, and (iii) x = λ/8, from the left-hand end of the string?202Has a video solution.
Textbook QuestionEnergy Output. By measurement you determine that sound waves are spreading out equally in all directions from a point source and that the intensity is 0.026 W/m^2 at a distance of 4.3 m from the source. (b) How much sound energy does the source emit in one hour if its power output remains constant?144Has a video solution.
Textbook QuestionEnergy Output. By measurement you determine that sound waves are spreading out equally in all directions from a point source and that the intensity is 0.026 W/m^2 at a distance of 4.3 m from the source. (a) What is the intensity at a distance of 3.1 m from the source?110Has a video solution.
Textbook QuestionThreshold of Pain. You are investigating the report of a UFO landing in an isolated portion of New Mexico, and you encounter a strange object that is radiating sound waves uniformly in all directions. Assume that the sound comes from a point source and that you can ignore reflections. You are slowly walking toward the source. When you are 7.5 m from it, you measure its intensity to be 0.11 W/m^2. An intensity of 1.0 W/m^2 is often used as the 'threshold of pain.' How much closer to the source can you move before the sound intensity reaches this threshold?192Has a video solution.
Textbook QuestionA jet plane at takeoff can produce sound of intensity 10.0 W/m^2 at 30.0 m away. But you prefer the tranquil sound of normal conversation, which is 1.0 μW/m^2. Assume that the plane behaves like a point source of sound. (a) What is the closest dis-tance you should live from the airport runway to preserve your peace of mind? (b) What intensity from the jet does your friend experience if she lives twice as far from the runway as you do? (c) What power of sound does the jet produce at takeoff?4731Has a video solution.
Textbook QuestionAt a distance of 7.00x10^12 m from a star, the intensity of the radiation from the star is 15.4 W/m^2. Assuming that the star radiates uniformly in all directions, what is the total power output of the star?104Has a video solution.
Textbook QuestionA fellow student with a mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x, t)=2.30mm cos[(16.98 rad/m^)x+(742 rad/s)t]. Being more practical, you measure the rope to have a length of 1.35 m and a mass of 0.00338 kg. You are then asked to determine the following: (f) tension in the rope; (g) average power transmitted by the wave.250Has a video solution.
Textbook QuestionSuppose a large spherical object, such as a planet, with radius R and mass M has a narrow tunnel passing diametrically through it. A particle of mass m is inside the tunnel at a distance 𝓍 ≤ R from the center. It can be shown that the net gravitational force on the particle is due entirely to the sphere of mass with radius 𝓇 ≤ 𝓍 there is no net gravitational force from the mass in the spherical shell with 𝓇 > 𝓍. a. Find an expression for the gravitational force on the particle, assuming the object has uniform density. Your expression will be in terms of x, R, m, M, and any necessary constants.58Has a video solution.
Textbook QuestionWhat are the (a) amplitude, (b) frequency, and (c) phase constant of the oscillation shown in FIGURE EX15.6? 29Has a video solution.
Textbook QuestionFIGURE EX15.7 is the position-versus-time graph of a particle in simple harmonic motion. a. What is the phase constant? 68Has a video solution.
Textbook QuestionAn object in SHM oscillates with a period of 4.0 s and an amplitude of 10 cm. How long does the object take to move from x = 0.0 cm to x = 6.0 cm?54Has a video solution.
Textbook QuestionFIGURE EX15.7 is the position-versus-time graph of a particle in simple harmonic motion. c. What is vₘₐₓ? 61Has a video solution.
Textbook QuestionThe amplitude of an oscillator decreases to 36.8% of its initial value in 10.0 s. What is the value of the time constant?32Has a video solution.
Textbook QuestionAn object in simple harmonic motion has an amplitude of 8.0 cm, n angular frequency of 0.25 rad/s, and a phase constant of π rad. Draw a velocity graph showing two cycles of the motion.76Has a video solution.
Textbook QuestionWhen a guitar string plays the note 'A,' the string vibrates at 440 Hz. What is the period of the vibration?72Has a video solution.
Textbook QuestionA 2.0-m-long string vibrates at its second-harmonic frequency with a maximum amplitude of 2.0 cm. One end of the string is at x=0 cm . Find the oscillation amplitude at x=10 , 20, 30, 40, and 50 cm.86Has a video solution.
Textbook QuestionThe lowest note on a grand piano has a frequency of 27.5 Hz. The entire string is 2.00 m long and has a mass of 400 g. The vibrating section of the string is 1.90 m long. What tension is needed to tune this string properly?331Has a video solution.