Multiple ChoiceSuppose a diver spins at 8 rad/s while falling with a moment of inertia about an axis through himself of 3 kg•m2. What moment of inertia would the diver need to have to spin at 4 rad/s? BONUS:How could he accomplish this?27511Has a video solution.
Multiple ChoiceTwo astronauts, both 80 kg, are connected in space by a light cable. When they are 10 m apart, they spin about their center of mass with 6 rad/s. Calculate the new angular speed they'll have if they pull on the rope to reduce their distance to 5 m. You may treat them as point masses, and assume they continue to spin around their center of mass.3081Has a video solution.
Textbook QuestionThe rotor (flywheel) of a toy gyroscope has mass 0.140 kg. Its moment of inertia about its axis is 1.20 * 10^-4 kg•m^2. The mass of the frame is 0.0250 kg. The gyroscope is supported on a single pivot (Fig. E10.51) with its center of mass a horizontal distance of 4.00 cm from the pivot. The gyroscope is precessing in a horizontal plane at the rate of one revolution in 2.20 s. (a) Find the upward force exerted by the pivot.181Has a video solution.
Textbook QuestionUnder some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a neutron star. The density of a neutron star is roughly 10^14 times as great as that of ordinary solid matter. Suppose we represent the star as a uniform, solid, rigid sphere, both before and after the collapse. The star's initial radius was 7.0 * 10^5 km (comparable to our sun); its final radius is 16 km. If the original star rotated once in 30 days, find the angular speed of the neutron star.992Has a video solution.
Textbook QuestionA thin uniform rod has a length of 0.500 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.400 rad/s and a moment of inertia about the axis of 3.00 * 10-3 kg/m^2. A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of the rod. When the bug has reached the end of the rod and sits there, its tangential speed is 0.160 m/s. The bug can be treated as a point mass. What is the mass of (a) the rod;898Has a video solution.
Textbook QuestionA large wooden turntable in the shape of a flat uniform disk has a radius of 2.00 m and a total mass of 120 kg. The turntable is initially rotating at 3.00 rad/s about a vertical axis through its center. Suddenly, a 70.0-kg parachutist makes a soft landing on the turntable at a point near the outer edge. (b) Compute the kinetic energy of the system before and after the parachutist lands. Why are these kinetic energies not equal?452Has a video solution.
Textbook QuestionA Gyroscope on the Moon. A certain gyroscope precesses at a rate of 0.50 rad/s when used on earth. If it were taken to a lunar base, where the acceleration due to gravity is 0.165g, what would be its precession rate?145Has a video solution.
Textbook QuestionCP A small block on a frictionless, horizontal surface has a mass of 0.0250 kg. It is attached to a massless cord passing through a hole in the surface (Fig. E10.40). The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of 2.85 rad>s. The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as a particle. (d) How much work was done in pulling the cord?350Has a video solution.
Textbook QuestionCP A small block on a frictionless, horizontal surface has a mass of 0.0250 kg. It is attached to a massless cord passing through a hole in the surface (Fig. E10.40). The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of 2.85 rad/s. The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as a particle. (c) Find the change in kinetic energy of the block.15321Has a video solution.
Textbook QuestionThe Spinning Figure Skater. The outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis through its center (Fig. E10.43). When the skater's hands and arms are brought in and wrapped around his body to execute the spin, the hands and arms can be considered a thinwalled, hollow cylinder. His hands and arms have a combined mass of 8.0 kg. When outstretched, they span 1.8 m; when wrapped, they form a cylinder of radius 25 cm. The moment of inertia about the rotation axis of the remainder of his body is constant and equal to 0.40 kg•m2 . If his original angular speed is 0.40 rev/s, what is his final angular speed? 1398Has a video solution.
Textbook QuestionA large wooden turntable in the shape of a flat uniform disk has a radius of 2.00 m and a total mass of 120 kg. The turntable is initially rotating at 3.00 rad/s about a vertical axis through its center. Suddenly, a 70.0-kg parachutist makes a soft landing on the turntable at a point near the outer edge. (a) Find the angular speed of the turntable after the parachutist lands. (Assume that you can treat the parachutist as a particle.)316Has a video solution.
Textbook QuestionA 10 g bullet traveling at 400 m/s strikes a 10 kg, 1.0-m-wide door at the edge opposite the hinge. The bullet embeds itself in the door, causing the door to swing open. What is the angular velocity of the door just after impact?Has a video solution.
Textbook QuestionA satellite follows the elliptical orbit shown in FIGURE P12.77. The only force on the satellite is the gravitational attraction of the planet. The satellite's speed at point 1 is 8000 m/s. b. What is the satellite's speed at point 2?Has a video solution.
Textbook QuestionA toy gyroscope has a ring of mass M and radius R attached to the axle by lightweight spokes. The end of the axle is distance R from the center of the ring. The gyroscope is spun at angular velocity ω, then the end of the axle is placed on a support that allows the gyroscope to precess. b. A 120 g, 8.0-cm-diameter gyroscope is spun at 1000 rpm and allowed to precess. What is the precession period?
Textbook QuestionA 75 g, 6.0-cm-diameter solid spherical top is spun at 1200 rpm on an axle that extends 1.0 cm past the edge of the sphere. The tip of the axle is placed on a support. What is the top's precession frequency in rpm?
Textbook QuestionA 2.0 kg, 20-cm-diameter turntable rotates at 100 rpm on frictionless bearings. Two 500 g blocks fall from above, hit the turntable simultaneously at opposite ends of a diameter, and stick. What is the turntable's angular velocity, in rpm, just after this event?2
Textbook QuestionA merry-go-round is a common piece of playground equipment. A 3.0-m-diameter merry-go-round with a mass of 250 kg is spinning at 20 rpm. John runs tangent to the merry-go-round at 5.0 m/s, in the same direction that it is turning, and jumps onto the outer edge. John's mass is 30 kg. What is the merry-go-round's angular velocity, in rpm, after John jumps on?Has a video solution.
Textbook QuestionDuring most of its lifetime, a star maintains an equilibrium size in which the inward force of gravity on each atom is balanced by an outward pressure force due to the heat of the nuclear reactions in the core. But after all the hydrogen 'fuel' is consumed by nuclear fusion, the pressure force drops and the star undergoes a gravitational collapse until it becomes a neutron star. In a neutron star, the electrons and protons of the atoms are squeezed together by gravity until they fuse into neutrons. Neutron stars spin very rapidly and emit intense pulses of radio and light waves, one pulse per rotation. These 'pulsing stars' were discovered in the 1960s and are called pulsars. a. A star with the mass (M = 2.0 X 10^30 kg) and size (R = 7.0 x 10^8 m) of our sun rotates once every 30 days. After undergoing gravitational collapse, the star forms a pulsar that is observed by astronomers to emit radio pulses every 0.10 s. By treating the neutron star as a solid sphere, deduce its radius.Has a video solution.