03:20Thermal Equilibrium, Temperature and Temperature Scales | A-level Physics | AQA, OCR, EdexcelSnapRevise214
Multiple ChoiceIf 53.2 g Al at 120.0 ºC is placed in 110.0 g H2O at 90 ºC within an insulated container that absorbs a negligible amount of heat, what is the final temperature of the aluminum? The specific heat capacities of water and aluminum are 4.184 J/g ∙ ºC and 0.897 J/g ∙ ºC, respectively.113124Has a video solution.
Textbook QuestionA 25.0 g piece of granite at 100.0°C was added to 100.0 g of water of 25.0°C, and the temperature rose to 28.4°C. What is the specific heat capacity of the granite? (The specific heat capacity for water is 4.18 J/(g•°C).) (LO 9.10) (a) 0.563 J/(g•°C) (b) 1.53 J/(g•°C) (c) 0.992 J/(g•°C) (d) 0.794 J/(g•°C)835Has a video solution.
Textbook QuestionWe pack two identical coolers for a picnic, placing 24 12-ounce soft drinks and five pounds of ice in each. However, the drinks that we put into cooler A were refrigerated for several hours before they were packed in the cooler, while the drinks that we put into cooler B were at room temperature. When we open the two coolers three hours later, most of the ice in cooler A is still present, while nearly all of the ice in cooler B has melted. Explain this difference.705Has a video solution.
Textbook QuestionA silver block, initially at 58.5 °C, is submerged into 100.0 g of water at 24.8 °C, in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 26.2 °C. What is the mass of the silver block?16021Has a video solution.
Textbook QuestionA 32.5-g iron rod, initially at 22.7 °C, is submerged into an unknown mass of water at 63.2 °C, in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 59.5 °C. What is the mass of the water?2753Has a video solution.
Textbook QuestionA 31.1-g wafer of pure gold, initially at 69.3 °C, is submerged into 64.2 g of water at 27.8 °C in an insulated container. What is the final temperature of both substances at thermal equilibrium?234741Has a video solution.
Textbook QuestionA 2.85-g lead weight, initially at 10.3 °C, is submerged in 7.55 g of water at 52.3 °C in an insulated container. What is the final temperature of both substances at thermal equilibrium?168431Has a video solution.
Textbook QuestionTwo substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. The mass of substance A is 6.15 g and its initial temperature is 20.5 °C. The mass of substance B is 25.2 g and its initial temperature is 52.7 °C. The final temperature of both substances at thermal equilibrium is 46.7 °C. If the specific heat capacity of substance B is 1.17 J>g # °C, what is the specific heat capacity of substance A?2187Has a video solution.
Textbook QuestionDry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation: CO2(s)¡CO2( g) ◀ When carbon dioxide sublimes, the gaseous cO2 is cold enough to cause water vapor in the air to condense, forming fog. When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly. The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough. Suppose that a small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The ΔH °f for CO2(s) is -427.4 kJ/mol.)441Has a video solution.
Textbook QuestionA 25.5-g aluminum block is warmed to 65.4 °C and plunged into an insulated beaker containing 55.2 g water initially at 22.2 °C. The aluminum and the water are allowed to come to thermal equilibrium. Assuming that no heat is lost, what is the final temperature of the water and aluminum?12231Has a video solution.
Textbook QuestionIf 50.0 mL of ethanol (density = 0.789 g>mL) initially at 7.0 °C is mixed with 50.0 mL of water (density = 1.0 g/mL) initially at 28.4 °C in an insulated beaker, and assuming that no heat is lost, what is the final temperature of the mixture?24682Has a video solution.
Textbook QuestionAn ice cube with a mass of 20 g at -20 °C (typical freezer temperature) is dropped into a cup that holds 500 mL of hot water, initially at 83 °C. What is the final temperature in the cup? The density of liquid water is 1.00 g>mL; the specific heat capacity of ice is 2.03 J>g@C; the specific heat capacity of liquid water is 4.184 J>g@C; the enthalpy of fusion of water is 6.01 kJ>mol.1313Has a video solution.