Here we're going to say that mass percent, also known as weight percent, is a percentage of a given element in a compound. Now we're going to say here it deals with the molar mass in grams of the selected element and 1 mole of the compound. So this translates to say that mass percent equals the mass or grams of an element divided by the grams of the compound and then multiplying that by 100. Using this helps us to determine the percent composition of any particular element within a given compound.

- 1. Matter and Measurements4h 29m
- What is Chemistry?5m
- The Scientific Method9m
- Classification of Matter16m
- States of Matter8m
- Physical & Chemical Changes19m
- Chemical Properties8m
- Physical Properties5m
- Intensive vs. Extensive Properties13m
- Temperature (Simplified)9m
- Scientific Notation13m
- SI Units (Simplified)5m
- Metric Prefixes24m
- Significant Figures (Simplified)11m
- Significant Figures: Precision in Measurements7m
- Significant Figures: In Calculations19m
- Conversion Factors (Simplified)15m
- Dimensional Analysis22m
- Density12m
- Specific Gravity9m
- Density of Geometric Objects19m
- Density of Non-Geometric Objects9m

- 2. Atoms and the Periodic Table5h 23m
- The Atom (Simplified)9m
- Subatomic Particles (Simplified)12m
- Isotopes17m
- Ions (Simplified)22m
- Atomic Mass (Simplified)17m
- Atomic Mass (Conceptual)12m
- Periodic Table: Element Symbols6m
- Periodic Table: Classifications11m
- Periodic Table: Group Names8m
- Periodic Table: Representative Elements & Transition Metals7m
- Periodic Table: Elemental Forms (Simplified)6m
- Periodic Table: Phases (Simplified)8m
- Law of Definite Proportions9m
- Atomic Theory9m
- Rutherford Gold Foil Experiment9m
- Wavelength and Frequency (Simplified)5m
- Electromagnetic Spectrum (Simplified)11m
- Bohr Model (Simplified)9m
- Emission Spectrum (Simplified)3m
- Electronic Structure4m
- Electronic Structure: Shells5m
- Electronic Structure: Subshells4m
- Electronic Structure: Orbitals11m
- Electronic Structure: Electron Spin3m
- Electronic Structure: Number of Electrons4m
- The Electron Configuration (Simplified)22m
- Electron Arrangements5m
- The Electron Configuration: Condensed4m
- The Electron Configuration: Exceptions (Simplified)12m
- Ions and the Octet Rule9m
- Ions and the Octet Rule (Simplified)8m
- Valence Electrons of Elements (Simplified)5m
- Lewis Dot Symbols (Simplified)7m
- Periodic Trend: Metallic Character4m
- Periodic Trend: Atomic Radius (Simplified)7m

- 3. Ionic Compounds2h 18m
- Periodic Table: Main Group Element Charges12m
- Periodic Table: Transition Metal Charges6m
- Periodic Trend: Ionic Radius (Simplified)5m
- Periodic Trend: Ranking Ionic Radii8m
- Periodic Trend: Ionization Energy (Simplified)9m
- Periodic Trend: Electron Affinity (Simplified)8m
- Ionic Bonding6m
- Naming Monoatomic Cations6m
- Naming Monoatomic Anions5m
- Polyatomic Ions25m
- Naming Ionic Compounds11m
- Writing Formula Units of Ionic Compounds7m
- Naming Ionic Hydrates6m
- Naming Acids18m

- 4. Molecular Compounds2h 18m
- Covalent Bonds6m
- Naming Binary Molecular Compounds6m
- Molecular Models4m
- Bonding Preferences6m
- Lewis Dot Structures: Neutral Compounds (Simplified)8m
- Multiple Bonds4m
- Multiple Bonds (Simplified)6m
- Lewis Dot Structures: Multiple Bonds10m
- Lewis Dot Structures: Ions (Simplified)8m
- Lewis Dot Structures: Exceptions (Simplified)12m
- Resonance Structures (Simplified)5m
- Valence Shell Electron Pair Repulsion Theory (Simplified)4m
- Electron Geometry (Simplified)8m
- Molecular Geometry (Simplified)11m
- Bond Angles (Simplified)11m
- Dipole Moment (Simplified)15m
- Molecular Polarity (Simplified)7m

- 5. Classification & Balancing of Chemical Reactions3h 17m
- Chemical Reaction: Chemical Change5m
- Law of Conservation of Mass5m
- Balancing Chemical Equations (Simplified)13m
- Solubility Rules16m
- Molecular Equations18m
- Types of Chemical Reactions12m
- Complete Ionic Equations18m
- Calculate Oxidation Numbers15m
- Redox Reactions17m
- Spontaneous Redox Reactions8m
- Balancing Redox Reactions: Acidic Solutions17m
- Balancing Redox Reactions: Basic Solutions17m
- Balancing Redox Reactions (Simplified)13m
- Galvanic Cell (Simplified)16m

- 6. Chemical Reactions & Quantities2h 35m
- 7. Energy, Rate and Equilibrium3h 46m
- Nature of Energy6m
- First Law of Thermodynamics7m
- Endothermic & Exothermic Reactions7m
- Bond Energy14m
- Thermochemical Equations12m
- Heat Capacity19m
- Thermal Equilibrium (Simplified)8m
- Hess's Law23m
- Rate of Reaction11m
- Energy Diagrams12m
- Chemical Equilibrium7m
- The Equilibrium Constant14m
- Le Chatelier's Principle23m
- Solubility Product Constant (Ksp)17m
- Spontaneous Reaction10m
- Entropy (Simplified)9m
- Gibbs Free Energy (Simplified)18m

- 8. Gases, Liquids and Solids3h 25m
- Pressure Units6m
- Kinetic Molecular Theory14m
- The Ideal Gas Law18m
- The Ideal Gas Law Derivations13m
- The Ideal Gas Law Applications6m
- Chemistry Gas Laws16m
- Chemistry Gas Laws: Combined Gas Law12m
- Standard Temperature and Pressure14m
- Dalton's Law: Partial Pressure (Simplified)13m
- Gas Stoichiometry18m
- Intermolecular Forces (Simplified)19m
- Intermolecular Forces and Physical Properties11m
- Atomic, Ionic and Molecular Solids10m
- Heating and Cooling Curves30m

- 9. Solutions4h 10m
- Solutions6m
- Solubility and Intermolecular Forces18m
- Solutions: Mass Percent6m
- Percent Concentrations10m
- Molarity18m
- Osmolarity15m
- Parts per Million (ppm)13m
- Solubility: Temperature Effect8m
- Intro to Henry's Law4m
- Henry's Law Calculations12m
- Dilutions12m
- Solution Stoichiometry14m
- Electrolytes (Simplified)13m
- Equivalents11m
- Molality15m
- The Colligative Properties15m
- Boiling Point Elevation16m
- Freezing Point Depression9m
- Osmosis16m
- Osmotic Pressure9m

- 10. Acids and Bases3h 29m
- Acid-Base Introduction11m
- Arrhenius Acid and Base6m
- Bronsted Lowry Acid and Base18m
- Acid and Base Strength17m
- Ka and Kb12m
- The pH Scale19m
- Auto-Ionization9m
- pH of Strong Acids and Bases9m
- Acid-Base Equivalents14m
- Acid-Base Reactions7m
- Gas Evolution Equations (Simplified)6m
- Ionic Salts (Simplified)23m
- Buffers25m
- Henderson-Hasselbalch Equation16m
- Strong Acid Strong Base Titrations (Simplified)10m

- 11. Nuclear Chemistry56m
- BONUS: Lab Techniques and Procedures1h 38m
- BONUS: Mathematical Operations and Functions47m
- 12. Introduction to Organic Chemistry1h 34m
- 13. Alkenes, Alkynes, and Aromatic Compounds2h 12m
- 14. Compounds with Oxygen or Sulfur1h 6m
- 15. Aldehydes and Ketones1h 1m
- 16. Carboxylic Acids and Their Derivatives1h 11m
- 17. Amines38m
- 18. Amino Acids and Proteins1h 51m
- 19. Enzymes1h 37m
- 20. Carbohydrates1h 46m
- Intro to Carbohydrates4m
- Classification of Carbohydrates4m
- Fischer Projections4m
- Enantiomers vs Diastereomers8m
- D vs L Enantiomers8m
- Cyclic Hemiacetals8m
- Intro to Haworth Projections4m
- Cyclic Structures of Monosaccharides11m
- Mutarotation4m
- Reduction of Monosaccharides10m
- Oxidation of Monosaccharides7m
- Glycosidic Linkage14m
- Disaccharides7m
- Polysaccharides7m

- 21. The Generation of Biochemical Energy2h 8m
- 22. Carbohydrate Metabolism2h 22m
- 23. Lipids2h 26m
- Intro to Lipids6m
- Fatty Acids25m
- Physical Properties of Fatty Acids6m
- Waxes4m
- Triacylglycerols12m
- Triacylglycerol Reactions: Hydrogenation8m
- Triacylglycerol Reactions: Hydrolysis13m
- Triacylglycerol Reactions: Oxidation7m
- Glycerophospholipids15m
- Sphingomyelins13m
- Steroids15m
- Cell Membranes7m
- Membrane Transport10m

- 24. Lipid Metabolism1h 45m
- 25. Protein and Amino Acid Metabolism1h 37m
- 26. Nucleic Acids and Protein Synthesis2h 54m
- Intro to Nucleic Acids4m
- Nitrogenous Bases16m
- Nucleoside and Nucleotide Formation9m
- Naming Nucleosides and Nucleotides13m
- Phosphodiester Bond Formation7m
- Primary Structure of Nucleic Acids11m
- Base Pairing10m
- DNA Double Helix6m
- Intro to DNA Replication20m
- Steps of DNA Replication11m
- Types of RNA10m
- Overview of Protein Synthesis4m
- Transcription: mRNA Synthesis9m
- Processing of pre-mRNA5m
- The Genetic Code6m
- Introduction to Translation7m
- Translation: Protein Synthesis18m

# Mass Percent - Online Tutor, Practice Problems & Exam Prep

Mass percent, or weight percent, quantifies the percentage of a specific element in a compound. It is calculated by dividing the mass of the element by the total mass of the compound and multiplying by 100. This concept is essential for determining the percent composition of elements within compounds, aiding in various chemical analyses. Understanding mass percent is crucial for applications in stoichiometry, where it relates to molar mass and the composition of substances, enhancing comprehension of chemical reactions and properties.

**Mass Percent** is the percentage of a particular element within a compound.

## Mass Percent

### Mass Percent Concept

#### Video transcript

### Mass Percent Example

#### Video transcript

Here it says to calculate the mass percent of carbon within sodium carbonate. So sodium carbonate is Na_{2}CO_{3}. We're looking for the mass percent of carbon, so that means we're gonna need the grams of carbon over the grams of the compound itself times 100. Alright. So sodium carbonate has within it 2 sodiums, 1 carbon, and 3 oxygens. We're gonna multiply them each by their atomic masses from the periodic table. So sodium is 22.99 grams, carbon is 12.01 grams and oxygen is 16 grams. So, multiplying them out, we get 45.98 grams, 12.01 grams, and 48 grams. Add them all together, that comes out to 105.99 grams. Take those numbers. So for carbon, its mass is 12.01, and for the compound itself, it's 105.99. So we do 12.01105.99. When we do that we get 11.3% as the mass percent of carbon within sodium carbonate.

Determine the percent composition of nitrogen and oxygen with nitrogen dioxide, NO_{2}.

#### Problem Transcript

## Do you want more practice?

### Here’s what students ask on this topic:

What is mass percent and how is it calculated?

Mass percent, also known as weight percent, quantifies the percentage of a specific element in a compound. It is calculated using the formula:

$\frac{\mathrm{mass}\left(g\right)of\mathrm{element}}{\mathrm{mass}\left(g\right)of\mathrm{compound}}\times 100$

This formula helps determine the percent composition of any particular element within a given compound, which is essential for various chemical analyses and understanding the composition of substances.

Why is mass percent important in chemistry?

Mass percent is crucial in chemistry because it helps determine the percent composition of elements within compounds. This information is essential for stoichiometry, which involves calculating the quantities of reactants and products in chemical reactions. Understanding mass percent allows chemists to predict how much of each element is present in a compound, aiding in the analysis of chemical properties and reactions. It also helps in quality control, formulation of mixtures, and various industrial applications where precise composition is necessary.

How do you find the mass percent of an element in a compound?

To find the mass percent of an element in a compound, follow these steps:

- Determine the molar mass of the compound by summing the atomic masses of all the elements in the compound.
- Find the mass of the specific element in one mole of the compound.
- Use the formula:

$\frac{\mathrm{mass}\left(g\right)of\mathrm{element}}{\mathrm{mass}\left(g\right)of\mathrm{compound}}\times 100$

This will give you the mass percent of the element in the compound.

What is the difference between mass percent and mole percent?

Mass percent and mole percent are both ways to express the composition of a mixture or compound, but they differ in what they measure:

**Mass percent:**This measures the mass of a specific element or component as a percentage of the total mass of the compound or mixture. It is calculated using the formula:

$\frac{\mathrm{mass}\left(g\right)of\mathrm{element}}{\mathrm{mass}\left(g\right)of\mathrm{compound}}\times 100$

**Mole percent:**This measures the number of moles of a specific component as a percentage of the total number of moles in the mixture. It is calculated using the formula:

$\frac{\mathrm{moles}\left(n\right)of\mathrm{component}}{\mathrm{total}\mathrm{moles}\left(n\right)in\mathrm{mixture}}\times 100$

While mass percent focuses on mass, mole percent focuses on the number of moles.

Can you provide an example of calculating mass percent?

Sure! Let's calculate the mass percent of hydrogen in water (H_{2}O).

- First, determine the molar mass of water: H
_{2}O = 2(1.01 g/mol) + 16.00 g/mol = 18.02 g/mol. - Next, find the mass of hydrogen in one mole of water: 2(1.01 g) = 2.02 g.
- Use the formula:

$\frac{2.02\left(g\right)ofH}{18.02\left(g\right)ofH}$_{2}

This gives:

$11.21\%$

So, the mass percent of hydrogen in water is 11.21%.