Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
In the reaction of potassium permanganate (KMnO4) with oxalic acid (C2H2O4) to produce carbon dioxide (CO2), how many moles of KMnO4 are consumed to form 0.886 moles of CO2? (Assume the balanced equation: 2 KMnO4 + 5 C2H2O4 + 3 H2SO4 → 2 MnSO4 + K2SO4 + 10 CO2 + 8 H2O)
A
0.177 moles
B
0.443 moles
C
0.886 moles
D
0.354 moles
Verified step by step guidance
1
Identify the balanced chemical equation given: 2 KMnO4 + 5 C2H2O4 + 3 H2SO4 → 2 MnSO4 + K2SO4 + 10 CO2 + 8 H2O.
From the balanced equation, note the mole ratio between KMnO4 and CO2. For every 2 moles of KMnO4 consumed, 10 moles of CO2 are produced.
Set up a proportion to find the moles of KMnO4 needed to produce 0.886 moles of CO2 using the mole ratio: \( \frac{2 \text{ moles KMnO}_4}{10 \text{ moles CO}_2} = \frac{x \text{ moles KMnO}_4}{0.886 \text{ moles CO}_2} \).
Solve the proportion for \( x \), which represents the moles of KMnO4 consumed: \( x = \frac{2}{10} \times 0.886 \).
Interpret the result to determine how many moles of KMnO4 are consumed to form 0.886 moles of CO2.